• 제목/요약/키워드: high pressure cylinder

검색결과 423건 처리시간 0.027초

SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향 (Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process)

  • 류호정;김하나;이동호;진경태;박영철;조성호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구 (Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG)

  • 이석환;오승묵;강건용;조준호;차경옥
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석 (Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method)

  • 김민규;권오준
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 직접모사법을 이용하여 고 고도 희박 영역에서 로켓의 자세 제어에 필수적인 측면 제트 분사와 그에 따른 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 밀도 차가 큰 자유 흐름 유동과 제트 유동을 동시에 모사하기 위해 입자 가중치 기법을 사용하였다. 두 수직한 평판 사이의 유동 및 측면 제트 분사에 의한 상호 작용 해석을 수행하였고 그 결과를 실험치와 비교하여 프로그램을 검증하였다. 좀 더 실제적인 로켓 모델로 blunted cone cylinder 형상에 대하여 받음각을 변화시켜가며 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 표면 압력 차이의 분포를 기준으로 람다(lambda) 충격파와 후류의 영향을 토의하였다. 받음각이 있는 유동의 경우 leeward 방향으로는 제트와 자유 흐름 유동의 상호 작용이 약해지며, windward 방향으로는 상호 작용이 매우 강해지는 것을 확인할 수 있었다.

직접분사식 압축착화엔진에서 DME의 2단 분사전략에 따른 엔진연소 및 배기특성에 관한 연구 (An Investigation for 2-stage Injection Strategy on Combustion and Emissions in a D.I Compression-ignition Engine Fueled with DME)

  • 정재훈;정동원;임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.45-51
    • /
    • 2012
  • This work was investigated 2-stage injection strategy on combustion and emissions in a direct injection compression-ignition engine fueled with DME. Single cylinder engine was equipped with common rail. Injection pressure was 700bar, dSOI between the main injection and the pilot injection was varied. Diesel was used as compared fuel of DME in all cases. The results was shown that maximum pressure was higher than all cases and its amount of DME and diesel was similar. Regardless the pilot injection, the main fuel injection timing was same. The heat release rate of the main injection for diesel was high while that of pilot injection for DME was high. The THC was very low regardless of the fuel type and injection strategy. In the single injection, NOx was increased to retard of main injection timing regardless of the fuel type. NOx emissions was decreased with the retardation of the main injection timing regardless of the fuel type in the case of 2-stage injection strategy.

대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구 (The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine)

  • 윤욱현;김병석;김동훈;김기두;하지수
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성 (Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios)

  • 이준순;정탄;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제24권1호
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine)

  • 박수한;연인모;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.

직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향 (The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine)

  • 강정호;윤수한;이중순;박종상;하종률
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

심해 압력용기 덮개판의 수중 커넥터홀 배치 최적설계 (Optimum Design of Underwater Connector Hole Arrangement for Deep-sea Pressure Vessel Cover Plate)

  • 이민욱;박성재;여태경;김형우;홍섭;조수길;장준용;이태희;최종수
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1627-1633
    • /
    • 2012
  • 심해저 장비에 사용되는 압력용기는 내장된 전자장비를 대기압 상태로 보호할 수 있도록 설계되어야 한다. 따라서 해수에 노출되지 않도록 수밀성과 심해의 높은 압력을 견딜 수 있는 구조적 안전성을 확보해야 한다. 본 연구의 압력용기는 원통형이며, 중앙부의 원통형 용기와 양 끝단의 평판형 덮개부로 이루어져있다. 일반적으로 압력용기 내부 전자장비와의 통신 및 전력전송을 위해 압력용기 덮개판에 다양한 수중 커넥터를 배치 한다. 그러나 한정된 덮개판 공간에 다수의 홀이 배치되면 응력집중을 유발하여 압력용기 덮개판의 구조적 안전성에 영향을 줄 수 있다. 본 논문에서는 구조적 안전성을 고려한 압력용기 덮개판의 홀 배치 최적화 기법에 대한 연구를 수행하였다.

흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향 (The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance)

  • 박권하;이진아;이화순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권8호
    • /
    • pp.1050-1056
    • /
    • 2010
  • 디젤기관은 공기만을 흡입 압축한 후에 연료를 분사하여 연소하기 때문에 높은 압축비가 가능하다. 높은 압축비에 의한 고효율의 장점과 연료의 직접분사에 의한 매연미립자의 배출 및 질소산화물의 배출이 많은 단점을 갖고 있다. 이러한 문제점을 해결하기 위하여 많은 연구들이 진행되었으며 수소를 흡기중에 공급하는 기술도 연구되고 있다. 본 논문에서는 미량의 수소를 연소실에 공급하여 엔진성능에 미치는 영향을 평가하였다. 토크와 엔진속도를 100%, 75%, 50%, 25%, 0%와 700rpm, 1000rpm, 1500rpm, 2000rpm로 구분하여 실험하였다. 실험결과 질소산화물이 약간 증가하였지만 연료소비율, 스모크와 일산화탄소 배출은 감소하였다. 수소의 첨가는 저부하 영역에서는 효과가 거의 없었지만 고부하 영역에서 큰 효과가 있었다.