• 제목/요약/키워드: high pressure compressor

검색결과 263건 처리시간 0.027초

SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석 (Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK)

  • 공창덕;박길수;이경선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.219-224
    • /
    • 2012
  • 본 연구에서 중형 상용민간항공기 추진진기관인 분리형 노즐을 갖는 2 스풀 터보팬 엔진인 BR715-56의[1] 정상 성능모델을 구성 및 탈설계점 성능해석이 상용코드인 MATLAB/SIMULINK를[2] 이용하여 엔진성능특성과 엔진진단을 위해 수행되었다. 먼저 팬, 고압압축기, 고압터빈, 저압터빈 구성품 성능 맵들이 축척방법을 이용하여 유사성능 맵들을 축척하여 생성되었고 다음 탈설계점 성능모사 프로그램이 구성품들 간 유량과 일 조화에 의해 구성되었다. 모델은 용이한 정상 및 동적 모사와 사용자 편의의 장점을 갖는 SIMULINK 프로그램을 이용하여 개발되었다. 제안한 모델에 의한 탈설계점 해석 결과들은 다양한 작동 조건들에서 GASTURB에 의한 해석 결과들과 잘 일치함이 확인 되었다.

  • PDF

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

터보냉동기의 소음원 파악 및 저소음화에 대한 연구 (A Study on the Identification of Noise Source and the Noise Reduction Method of a Turbo Chiller)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we identify the noise source and the path of a chiller. This chiller is newly developed for R-l34a refrigerant and 250 RT cooling capacity. The measured overall SPL of the developed turbo-chiller is about 100 dBA. Due to the high rotating speed of the centrifugal impeller, the nun noise source of the chiller is the blade passing frequency and its higher harmonics of the centrifugal impeller. This generated soundpropagates through the duct, and then transmits and radiates to the outer field. From the experiment, it is found that the high frequency noise is mostlytransmitted and radiated through the elbow duct, but the low frequency noise is transmitted and vadiated through the condenser wall. Therefore applying the absorbing material is an effective way of reducing the high and low frequency noise simultaneously. Measurement results show that the application of the sound absorbing material to the elbow duct reduced the overall sound pressure level by 4 dB compared to the 9 dBA reduction for the case of full enclosure. In order to control the generated noise, a dissipativetype silencer is also designed and tested. The silencer reduced the radiated noise about 7.5 dBA.

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

곡물냉각기의 성능해석을 위한 시뮬레이션 (Simulation for Performance Analysis of a Grain Cooler)

  • 박진호;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.449-460
    • /
    • 2001
  • This study was carried out to develop a simulation model with EES(Engineering equation solver) for analyzing the performance of a grain cooler. In order to validate the developed simulation model, several main factors which have affected on the performance of the gain cooler were investigated through experiments. A simulation model was developed in the standard vapor compression cycle, and then this model was modified considering irreversibe factors so that the developed alternate model could predict the actual cycle of a grain cooler. The compressor efficiency in vapor compression cycle considering irreversibility much affected on the coefficient of performance(COP). The COP in the standard vapor compression cycle model was greatly as high as about 6.50, but the COP in an alternative model considering irreversibility was as low as about 3.27. As a result of comparison between the actual cycle and the vapor compression cycle considering irreversibility, the difference of pressure at compressor outlet(inlet) was a little by about 48kPa (8.8kPa), the temperatures of refrigerant at main parts of the grain cooler were similar. and the temperature of chilled air was about 8$\^{C}$ in both. The model considering irreversibility could predict performance of the grain cooler. The theoretical period required to chill grain of 1,383kg from the initial temperature 24$\^{C}$ to below 11$\^{C}$ was about 55 hours 30 minutes, and the actual period required in a grain bin was about 58 hours. The difference between the predicted and an actual period was about 2 hours 30 minutes. The cooling performance predicted by the developed model could well estimate the cooling period required to chill the grain.

  • PDF

스퀴즈필름 댐퍼-베어링에 장착된 50kW 터보 제너레이터 초임계 로터의 동적응답 (Dynamic Response of 50kW Turbo-Generator with Super Critical Rotor supported on a Squeeze Film Damper- Bearing)

  • 최상규;김영철;이동환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.521-527
    • /
    • 2001
  • The dynamic performance analyses and tests for a 50kW turbo-generator (KIMM-TG50) were carried out. The operating concept of this machine is that it gets the initial driving force from the built-in motor-generator until it reaches its self-sustaining speed of 40,000 rpm, and then the driving mode is changed to self-operating mode by the combustor installed between the centrifugal compressor and the turbine. Due to winding mistake of motor-generator, the system could go only up to 22000 rpm by the motor so that high pressure air externally fed into the turbine was utilized to get the system to run up to 62,000 rpm thereafter. The vibration data collected during the tests revealed that the first bending critical speed is in near 5,600 rpm as predicted in the design stage of the rotor-bearing system, and that there were no other identifiable critical speeds up until 62,000 rpm due to high damping from the squeeze film damper-bearings supporting the rotor. This paper presented some of the experimental results along with dynamic performance predictions made in the design stage as a part of progress being made.

  • PDF

증기압축식/흡수식 하이브리드 히트펌프 사이클에 관한 최적화 연구 (Optimization Study of the Compression/Absorption Hybrid Heat Pump Cycle)

  • 전관택;박춘건;정동수
    • 설비공학논문집
    • /
    • 제13권1호
    • /
    • pp.48-58
    • /
    • 2001
  • For the past few decades the vapor compression cycle with a solution circuit (VCCSC) has been known to provide high efficiency and variable capacity. In this study performance of a VCCSC cycle is examined through computer simulation. In the simulation heat exchangers were modelled by specifying UA or effectiveness values while the compressor performance was specified by an isentropic efficiency. Aqua/ammonia solution was chosen as the working fluid which can be used in the high temperature range. The results show that there exists an optimum operation condition which is dependent upon the temperatures of the external heat transfer fluids(HTFs). Besides the HTF\`s temperature, the maximum system pressure and the size of the solution heat exchanger are shown to have an influence on the optimum operation condition. Finally, as compared to a simple vapor compression heat pump with HFC134a, the COP of the VCCSC is shown to be 2∼22% higher.

  • PDF

Multiphysics Software를 활용한 원심 압축기용 틸팅 패드 저널 베어링 특성과 회전체 동역학 분석 (Analysis of Tilting Pad Journal Bearing Characteristics and Rotordynamics for Centrifugal Compressors Using Multiphysics Software)

  • 문소연;윤종완;박상신
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.268-272
    • /
    • 2023
  • This study explores the characteristics of tilting pad journal bearings used in the high-speed rotating shaft systems of centrifugal compressors. A centrifugal compressor is a high-speed rotating machine that is widely used to compress gases or vapors employed in various industrial applications. It transfers the centrifugal force of a fast-spinning impeller to the fluid and compresses it under high pressure. Many high-speed rotating shaft systems, which require high stability, use tilting pad journal bearings. The characteristics of these bearings can vary depending on several properties, and identifying the appropriate characteristics is essential to optimize the design on a case-to-case basis. In this study, the authors perform a time-dependent analysis of the properties of tilting pad journal bearings and the rotordynamics of the rotating shaft system using COMSOL Multiphysics software. Specifically, the authors analyze the characteristics of the tilting pad journal bearings by performing a parametric sweep using parameters such as pad clearance, maximum tilting angle, preload, number of pads, and pad pivot offset. The authors then use the results of the bearing-characteristics analysis to evaluate the vibration of the rotating shaft and verify its operation within a desirable range. The understanding gained from this study will allow us to determine the optimal properties of these bearings and the limiting operational speed using COMSOL Multiphysics software.

연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구 (Optimization of the multi-chamber perforated muffler for the air processing unit of the fuel cell electric vehicle)

  • 김의열;김민수;이상권;서상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.342-350
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

  • PDF

공기 포일 베어링을 사용하는 300마력급 터보송풍기 개발 (Development of a 300 HP Class Turbo Blower with Air Foil Bearings)

  • 김경수;이기호;박기철;이시우;김승우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.331-334
    • /
    • 2006
  • Air foil bearings have been attempted for application to industrial turbo machines, since they have several advantages over oil bearings in terms of endurance, simplicity, environment-friendliness, efficiency, sound and vibration, and small turbo machines with air foil bearings are in the market as the result. Recently, researches on widening the application spectrum of air foil bearings are in progress worldwide. In this paper, a 300 HP class turbo blower using air foil bearings is introduced. The turbo blower has a high speed PMSM(Permanent Magnet Synchronous Motor) driving a compressor, and air flow rate is designed to be $180\;m^3/min$ at pressure ratio of 1.6. The maximum rotational speed is set to 17,000 RPM to maximize the total efficiency with the result that the weight of rotor assembly is 26kg, which is expected to be the largest turbo machine with air foil bearings ever developed in the world.

  • PDF