• Title/Summary/Keyword: high pressure compressor

Search Result 263, Processing Time 0.023 seconds

Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor (원심압축기 채널디퓨저 내부의 비정상 압력분포)

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.69-77
    • /
    • 1999
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

Valve Dynamic Analysis of a High Pressure Reciprocating Compressor (고압 왕복동 압축기의 밸브 거동해석)

  • 이안성;홍용주;정영식;변용수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.107-111
    • /
    • 2002
  • A complex valve dynamic analysis has been performed with a high Pressure reciprocating gas compressor. Valve dynamic equations, which take into account the flow continuity and cylinder pressure fluctuation, have been derived. Flow coefficients of valves has been analyzed, using CFD models. Results have shown that both of the suction and discharge values behave favorably without any fluttering motions.

  • PDF

Optimal Design of Thrust Surface Oil Groove of a High Side Scroll Compressor (고압식 스크롤 압축기 스러스트 오일 그루브 최적 설계)

  • Kim, Hyun-Jin;No, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.127-133
    • /
    • 2017
  • Performance analysis has been carried out on a high side scroll compressor that had a fixed scroll equipped with a circular oil groove on its thrust surface. Oil was supplied to the oil groove through an intermittent opening from a high pressure oil reservoir formed inside the orbiting scroll hub. Oil in the groove was then delivered to both suction and back pressure chambers by pressure differentials and viscous pumping action of the orbiting scroll base plate. Mathematical modeling of this oil groove system was incorporated into a main compressor performance simulation program for an optimum oil groove design. The study findings were as follows. Pressure in the oil groove can be controlled by changing its configuration and the oil passage area. With an enlarged oil passage, the pressure in the oil groove heightens due to an increased flow rate, but the pressure elevation in the back pressure chamber is small, resulting in reduced friction loss at the thrust surface between the two scrolls. On the other hand, by increasing the oil passage area, the oil content in the refrigerant flow increases. Considering all these factors, the energy efficiency ratio could be improved by about 3.6% under the ARI condition by an optimal oil groove design.

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

A Experimental Study on a Pressure Variation in the Cavity of Hydrogen Diaphragm Compressor (다이아프램식 수소압축기의 캐비티 내 압력특성 변화에 관한 실험적 연구)

  • Shin, Young-Il;Park, Hyun-Woo;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.769-772
    • /
    • 2009
  • Diaphragm compressors are used for a hydrogen compression because it can achieve high gas pressure with high purity. But diaphragm's lifetime may depend on the shape of the cavity and deflection from fluctuation the pressure change, which is necessary to monitored. In this study, the gas and hydraulic oil pressure in the cavity were measured as piston speed varies for diaphragm compressor. The results show pressure change quantities were reduced and maximum pressure points are delayed as the piston moves faster. And the hydraulic pressure were elevated as gas pressure elevated. And the compression period was more faster than expansion period.

  • PDF

Performance Analysis of an Air-Cycle Refrigeration System (공기사이클 냉동시스템의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.671-678
    • /
    • 2012
  • The objective of this study is to analyze theoretically the performance of an open air-cycle refrigeration system in which environmental concerns increase. The pressure ratio of the external compressor and efficiencies of the components that compose of the system are selected as important parameters. As the pressure ratio of the external compressor increases, the pressure ratio of the ACM compressor is determined high, the refrigerating temperature and capacity increase, the COP decreases, and the total entropy production rate increases. The effect of heat exchanger effectiveness and turbine efficiency on the performance are greater than that of the ACM compressor efficiency. Also the performance of the air-cycle refrigeration system with two heat exchangers has been enhanced like high COP and low total entropy production rate, compared to the system with one heat exchanger.

Robust Design for Shape Parameters of High Pressure Thermal Vapor Compressor by Numerical Analysis (전산해석을 통한 고압열증기압축기 형상변수에 관한 강건 설계)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.931-937
    • /
    • 2008
  • A high motive pressure thermal vapor compressor(TVC) for a commercial multi-effect desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio.

Thermodynamic Analysis of High Pressure Multi-stage Reciprocating Compressors with Inter-coolers (중간 냉각기가 있는 고압 다단 왕복동식 압축기에 관한 열역학적 해석)

  • Lee, Euk-Soo;Kim, Myung-Hun;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1238-1247
    • /
    • 2003
  • Simplified thermodynamic analysis of high pressure 4-stage reciprocating compressors with 4 inter-coolers has been investigated to predict a behavior of a compressor system for NGV(natural gas vehicles). A computer program has been developed to predict and estimate the performance of high pressure 4-stage reciprocating compressor system. Thermodynamic properties of compressed natural gas(CNG) were calculated by ideal gas theory and compression cycle was assumed as reversible adiabatic compression and expansion processes, and isobaric intake and discharge processes. Comparison between results predicted by calculation model and measured by experimental tests is presented.

The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner (공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계)

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

Application of Pressure Correction Method to CFD Work for 8 Centrifugal Compressor Impellers (압력보정법을 이용한 8개의 원심압축기 임펠러 CFD의 적용 연구)

  • Oh, Jongsik;Ro, SooHyuk;Hyun, YongIk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.226-235
    • /
    • 2000
  • Two representative finite volume methods, i.e., the time marching method and the pressure correction method, were applied to 8 centrifugal compressor impeller flows, with low to very high level of pressure ratio, among which 7 impellers' experimental performance is given in the open literature. The present study is focused on the prediction differences from both methods, developed by the authors, in the pressure correction method's point of view. In all cases, the time marching method gives a satifactory solution, but the pressure correction method does not. Up to about $18\%$ less level of total-to-total pressure ratio is predicted by the pressure correction method as the level of the impeller pressure ratio increases up to about 10. The drop of total pressure ratio is caused by the underestimation of static pressure rise which seems to be attributed to inappropriate linearization and discretization of the pressure/density coupling terms in the pressure correction equation.

  • PDF