• Title/Summary/Keyword: high pl and hydrophilic amino acids

Search Result 2, Processing Time 0.023 seconds

Characteristics of Antifreeze Protein-1 Induced during Low Temperature Acclimation in the Protaetia brevitarsis (Coleoptera; Cetonidae) Larva

  • Hyung Chul Lee;Chong Myung Yoo
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Change of proteins was confirmed during low temperature acclimation of overwintering larva, and some biochemical characteristics of the induced antifreeze protein-1 (AFP-1) were investigated in Protaetia brevitarsis. As the freezing point depression by the action of induced AFPs, a considerable thermal hysteresis was observed in the haemolymph and in partially purified proteins. AFP-1 was purified from the cold acclimation larvae by ammonium sulfate precipitation ion exchange chromatography, gel permeation chromatography, and electroelution. The purified AFP-1 was determined to be a glycoprotein (approximately 320 kDa, pl 5.8) composed of a single type of subunit (80 kDa). The high contents of hydrophilic amino acids (Asp, Glu, Lys, Asn, Gln, Arg, Ser, Thr) were also confirmed, showing similarity with antifreeze proteins from other insects.

  • PDF

Soluble Expression of Recombinant Olive Flounder Hepcidin I Using a Novel Secretion Enhancer

  • Lee, Sang Jun;Park, In Suk;Han, Yun Hee;Kim, Young Ok;Reeves, Peter R.
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • Expression of olive flounder hepcidin I (HepI) fused with truncated OmpA signal peptides ($OmpASP_{tr}$) as directional signals does not produce soluble fusion proteins. However, by inserting amino acid segments (xxx) varying in pI and hydrophobicity/hydrophilicity into a leader sequence containing a truncated OmpASP ($OmpASP_{tr}$) and a factor Xa cleavage site (Xa) [$OmpASP_{tr}{\mid}(xxx){\mid}Xa$], we were able in some cases to express soluble recombinant HepI. Soluble expression of the recombinant protein strongly correlated with (xxx) insertions of high pI and hydrophilicity. Therefore, we modified the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence by inserting Arg and Lys into (xxx) to increase the hydrophilicity of the signal peptide region. These modifications enhanced the expression of soluble recombinant HepI. Hydropathic profile analysis of the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ HepI fusion proteins revealed that the transmembrane-like domains derived from the $OmpASP_{tr}{\mid}(xxx){\mid}Xa$ sequence were larger than the internal positively charged domain native to HepI. It should therefore be possible to overcome the obstacle of internal positively charged domains to obtain soluble expression of recombinant proteins by monitoring the hydrophilicity and hydropathic profile of the signal peptide region using a computer program.