• Title/Summary/Keyword: high performance steel fiber reinforced concrete

Search Result 227, Processing Time 0.031 seconds

An Experimental Study on RC Columns Using High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체를 사용한 콘크리트 기둥의 실험적 연구)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Jeon Esther;Yang Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.631-634
    • /
    • 2004
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SCI) and polypropylene(PP), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: an experimental study

  • Ibraheema, Omer Farouk;Abu Bakar, B.H.;Joharib, I.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.1-17
    • /
    • 2015
  • An experimental investigation is conducted to examine the behavior and cracking of steel fiberre-inforced concrete spandrel L-shaped beams subjected to combined torsion, bending, and shear. The experimental program includes 12 medium-sized L-shaped spandrel beams organized into two groups, namely, specimens with longitudinal reinforcing bars, and specimens with bars and stirrups. All cases are examined with 0%, 1%, and 1.5% steel fiber volume fractions and tested under two different loading eccentricities. Test results indicate that the torque to shear ratio has a significant effect on the crack pattern developed in the beams. The strain on concrete surface follows the crack width value, and the addition of steel fibers reduces the strain. Fibrous concrete beams exhibited improved overall torsional performance compared with the corresponding non-fibrous control beams, particularly the beams tested under high eccentricity.

Flexural behavior of concrete beams reinforced with different types of fibers

  • Kh., Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha;Kh., Abdolbaqi M.
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.999-1018
    • /
    • 2016
  • Enhanced tensile properties of fiber reinforced concrete make it suitable for strengthening of reinforced concrete elements due to their superior corrosion resistance and high tensile strength properties. Recently, the use of fibers as strengthening material has increased motivating the development of numerical tools for the design of this type of intervention technique. This paper presents numerical analysis results carried out on a set of concrete beams reinforced with short fibers. To this purpose, a database of experimental results was collected from an available literature. A reliable and simple three-dimensional Finite Element (FE) model was defined. The linear and nonlinear behavior of all materials was adequately modeled by employing appropriate constitutive laws in the numerical simulations. To simulate the fiber reinforced concrete cracking tensile behavior an approach grounded on the solid basis of micromechanics was used. The results reveal that the developed models can accurately capture the performance and predict the load-carrying capacity of such reinforced concrete members. Furthermore, a parametric study is conducted using the validated models to investigate the effect of fiber material type, fiber volume fraction, and concrete compressive strength on the performance of concrete beams.

Lap Splice Performance of Reinforcing Bars in High Performance Fiber Reinforced Cementitious Composite under Repeated Loading (반복하중 하에서 고인성 시멘트 복합체 내 철근의 겹침이음성능)

  • Jeon, Esther;Kim, Sun-Woo;Yang, Ii-Seung;Han, Byung-Chan;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.181-184
    • /
    • 2005
  • Experimental results on lap splice performance of high performance fiber reinforced cementitious composite(HPFRCC) with fiber types under repeated loading are reported. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The development length($l_d$) was calculated according to the relevant ACI code requirements for reinforcing bars in concrete. The current experimental results demonstrated clearly that the use of fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars.

  • PDF

Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios;Iakovidis, Pantelis E.
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.115-129
    • /
    • 2019
  • The effectiveness of an innovative method for the earthquake-resistant rehabilitation of existing poorly detailed reinforced concrete (RC) structures is experimentally investigated herein. Eight column subassemblages were subjected to earthquake-type loading and their hysteretic behaviour was evaluated. Four of the specimens were identical and representative of columns found in RC structures designed in the 1950s-70s period for gravity load only. These original specimens were subjected to cyclic lateral deformations and developed brittle failure mechanisms. Three of the damaged specimens were subsequently retrofitted with innovative high-strength steel fiber-reinforced concrete (HSSFC) jackets. The main variables examined were the jacket width and the contribution of mesh steel reinforcement in the seismic performance of the enhanced columns. The influence of steel fiber volume fraction was also examined using test results of a previous work of Tsonos et al. (2017). The fourth earthquake damaged subassemblage was strengthened with a conventional RC jacket and was subjected to the same lateral displacement history as the other three retrofitted columns. The seismic behaviour of the subassemblages strengthened according to the proposed retrofit scheme was evaluated with respect to that of the original specimens and that of the column strengthened with the conventional RC jacket. Test results clearly demonstrated that the HSSFC jackets effectively prevented the development of shear failure mechanisms, while ensuring a ductile seismic response similar to that of the subassemblage retrofitted with the conventional RC jacket. Ultimately, an indisputable superiority in the overall seismic performance of the strengthened columns was achieved with respect to the original specimens.

Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member (폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Kim, Heung-Youl;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.457-460
    • /
    • 2008
  • This study evaluated fire resistance performance for polypropylene/steel fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, non-fiber high strength concrete column specimen occurred serious spalling and indicated rapidly internal temperature increase. Specimen with polypropylene fiber occurred not spalling. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature propagation. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

  • PDF

Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns

  • Choi, Eun Gyu;Kim, Hee Sun;Shin, Yeong Soo
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • In this study, an experimental study is performed to understand the effect of spalling on the structural behavior of fire damaged steel reinforced high strength concrete (SRHSC) columns, and the test results of temperature distributions and the displacements at elevated temperature are analyzed. Toward this goal, three long columns are tested to investigate the effect of various test parameters on structural behavior during the fire, and twelve short columns are tested to investigate residual strength and stiffness after the fire. The test parameters are mixture ratios of polypropylene fiber (0 and 0.1 vol.%), magnitudes of applied loads (concentric loads and eccentric loads), and the time period of exposure to fire (0, 30, 60 and 90 minutes). The experimental results show that there is significant effect of loading on the structural behaviors of columns under fire. The loaded concrete columns result more explosive spalling than the unloaded columns under fire. In particular, eccentrically loaded columns are severely spalled. The temperature distributions of the concrete are not affected by the loading state if there is no spalling. However, the loading state affects the temperature distributions when there is spalling occurred. In addition, it is found that polypropylene fiber prevents spalling of both loaded and unloaded columns under fire. From these experimental findings, an equation of predicting residual load capacity of the fire damaged column is proposed.

Flexural toughness density of High Performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 시멘트 복합재료의 휨인성 밀도)

  • Kim, Dong-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.401-402
    • /
    • 2010
  • This research initially suggest flexural toughness density as a key parameter describing energy absorption capacity of High Performance Fiber Reinforced Cementitious Composites [HPFRCC] regardless of the size of specimen. Two types of high strength steel fibers, Hooked and Twisted fiber, were used in two types of flexural specimen ($100{\times}100{\times}350mm^3$ and $150{\times}150{\times}500mm^3$) to estimate and validate the flexural toughness density.

  • PDF

Evaluation on the Impact Resistance Performance of Fiber Reinforced Concrete by High Velocity Steel Projectile Test (고속 비상체의 충격시험에 의한 섬유보강콘크리트의 내충격 성능평가)

  • Nam, Jeong-Soo;Choi, Hyeong-Gil;Kim, Young-Sun;Park, Jong-Ho;Jeong, Yong;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.389-390
    • /
    • 2009
  • Recently, building structure damage and number of lives lost by bomb terror is increasing. Therefore, in this study, present basic data for development of impact resistance performance by evaluation on the impact resistance performance of fiber reinforced concrete by high velocity steel projectile test.

  • PDF

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.