• Title/Summary/Keyword: high performance steel fiber concrete

Search Result 294, Processing Time 0.03 seconds

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

The Moment-Curvature Relationship of the Rectangular Ultra High Performance Fiber Reinforced Concrete Beam (초고강도 섬유보강 직사각형 콘크리트보의 모멘트-곡률 관계)

  • Han, Sang-Mook;Guo, Qing-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The flexural behavior of the UHPFRC rectangular beam which has 100 MPa, 140 MPa compressive strength were compared with that of the typical RPC rectangular beam which has same geometrical shape, prestressd force and 160 MPa compressive strength. UHPFRC beam was not reinforced at all and the variable of test is fraction of steel fiber, compressive strength of concrete, method of prestressing and ratio of prestressing bar. The behavior of UHPFRC beam was analysed by relationship of moment - curvature and load - deflection. Simple modeling of stress-strain of UHPFRC was proposed. Based on the proposed constituted, the flexural moment-curvature relationship was calculated and compared with experimental data on prestressed UHPFRC beams. Good agreement between calculated strengths and experimental data is obtained.

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Lining(I : Application of New Type Accelerator for High Strength Shotcrete) (Permanent Shotcrete Tunnel Lining 구축을 위한 고성능 숏크리트 개발( I : 고강도 숏크리트 개발을 위한 새로운 급결제 적용))

  • 박해균;이명섭;김재권;안병제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1023-1030
    • /
    • 2002
  • From the early 1980s, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate accelerator (waterglass) was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength and equivalent flexural strength were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Flexural performance evaluation of SFRC with design strength of 60 MPa (TBM 터널 세그먼트용 60 MPa급 강섬유보강콘크리트의 휨성능 평가)

  • Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2013
  • Based on Model Code 2010, flexural and residual strength, flexural toughness of SFRC with design strength of 60 MPa are evaluated. For comparisons, SFRC with design strength 40 MPa was tested. Distribution of steel fibers in crack surface of specimens was evaluated by visual inspection. The used steel fibers were hooked fibers with aspect ratio of 64, 67 and 80. In all specimens, mix ratio of steel fibers was 0.5% Vol. In results, only SFRC with the highest aspect ratio satisfied requirements specified in Model Code 2010. The results demonstrated that the use of high aspect ratio will provide enough flexural toughness for high strength concrete. Also, it is found that low slump of high strength concrete can help to enhance isotropic fiber distribution.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Effect of siliceous powder's particle size on the workability and strength of UHPC (석영미분말의 입자크기가 UHPC의 유동성 및 강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.441-444
    • /
    • 2008
  • Ultra high performance concrete (UHPC) in this study is composed of sand, cement, silica fume, siliceous powder, superplasticizer and steel fiber. UHPC is composed of fine mineral particles below 0.5mm in diameter. In general, siliceous powder improves the mechanical properties of concrete by physical and chemical effect. Physical effect is related with filling interior voids which weaken the mechanical properties and chemical effect with reaction of $SiO_2$ with cement hydrates in a condition of high temperature and pressure. We evaluated the effect of siliceous powder's particle size on the mechanical properties of ultra high performance concrete in air pressure and $90^{\circ}C$ steam curing condition. siliceous powder's particle size in this study is in the range of $2{\mu}m$ to $26{\mu}m$. Fluidity in a fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in a hardened concrete was evaluated. We could find out that the smaller siliceous powder's particle size is, the better the fluidity and strength properties.

  • PDF

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

Research on the Bond Behavior of FRP Rebars subjected to Cyclic Loading (반복하중을 받는 FRP 보강근의 부착성능에 대한 연구)

  • Chang, Mun-Suk;Lee, Jung-Yoon;Park, Ji-Sun;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.205-208
    • /
    • 2006
  • The use of Fiber Reinforced Polymer (FRP) bars has been gaining popularity in the civil engineering community, as an alternative material to steel reinforcement, for their noncorrosive nature and high strength-to-weight ratio. Good performance of reinforced concrete requires adequate interfacial bond between the reinforcing material and the concrete because the load applied must be transferred from the matrix to the reinforcement. Although studies on the FRP bond behavior under monotonic loading has been reported by many, there are very little work done under cyclic loading. In this paper, we present the experimental study on the bond behavior of three different types of FRP rebars subjected to four different cyclic loading conditions.

  • PDF

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.