• Title/Summary/Keyword: high multi-mode instability

Search Result 7, Processing Time 0.02 seconds

Effects of High-harmonic Components on the Rayleigh Indices in Multi-mode Thermo-acoustic Combustion Instability

  • Song, Chang Geun;Yoon, Jisu;Yoon, Youngbin;Kim, Young Jin;Lee, Min Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.518-525
    • /
    • 2016
  • This paper presents the characteristics of non-fundamental multi-mode combustion instability and the effects of high-harmonic components on the Rayleigh criterion. Phenomenological observations of multi-harmonic-mode dynamic pressure waves regarding the intensity of harmonic components and the source of wave distortion have been explained by introducing examples of second- and third-order harmonics at various amplitudes. The amplitude and order of the harmonic components distorted the wave shapes, including the peak and the amplitude, of the dynamic pressure and heat release, and consequently the temporal Rayleigh index and its integrals. A cause-and-effect analysis was used to identify the root causes of the phase delay and the amplification of the Rayleigh index. From this analysis, the skewness of the dynamic pressure turned out to be a major source in determining whether multi-mode instability is driving or damping, as well as in optimizing the combustor design, such as the mixing length and the combustor length, to avoid unstable regions. The results can be used to minimize errors in predicting combustion instability in cases of high multi-mode combustion instability. In the future, the amount of research and the number of applications will increase because new fuels, such as fast-burning syngases, are prone to generating multi-mode instabilities.

Effect of Swirl Injector with Multi-Stage Tangential Entry on Acoustic Damping in Liquid Rocket Engine (액체로켓에서 다단 접선 유입구를 갖는 스월인젝터의 음향학적 감쇠기능)

  • ;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.71-79
    • /
    • 2006
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. The interior air core shape of injector is more stable in the case of using the swirl injector with multi-stage entry than with single-stage entry. Also, when the swirl injector with multi-stage entry is used, tuned-injector length for unstable mode is well agreed with the calculated length. From the experimental data, it is proved that if the interior air core shape of swirl injector is stable, the fine tuned swirl injector can decrease the unstable mode of model chamber effectively and increase the damping rate.

Effect of Multi-Swirl Injector on Acoustic Damping in Model Combustion Chamber (모형 연소실에 장착된 다중 스월인젝터의 음향학적 감쇠 효과)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.198-203
    • /
    • 2007
  • The aim of this study is to suppress the high-frequency combustion instability by acoustic absorption through swirl injector with variable air core length. In the previous study, acoustic damping effects on air core (length, shape, volume) and location of the injector in a model chamber were investigated. Through previous results, our study has advanced to the effect of tuned multi-injectors. From the experimental data, it is proved that increasing of numbers of injectors mounted each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed each anti-node point of model chamber, damping effect of tuned injectors with multi modes is well agreed with it of tuned injectors with single mode.

  • PDF

Acoustic Damping Swirl Injector for Reduction of Combustion Instability (연소불안정 저감을 위한 음향학적 감쇠기능성 스월 인젝터)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.7-12
    • /
    • 2007
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. When the targeted injector for each modes is located at anti-node point, the amplitude of modes was decreased. And when the injector of large diameter is mounted, the split of mode which accompanies the decrease of amplitude appeared. From the experimental data, it is proved that if the location of injector mounted is located at an anti-node position of the targeted modes with proper volume, the amplitude of modes is decreased and the split of modes occurs at anti-node point.

  • PDF

Effect of Multi-Swirl Injector on Acoustic Damping for Reduction of Combustion Instability (연소불안정 저감을 위한 다중 스월 인젝터의 음향학적 감쇠기능)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.62-71
    • /
    • 2008
  • Swirl injector with adjustable backhole length was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and its damping capacity is verified in atmospheric temperature. Experiments were carried out with copied tubes on air core because the interior air core volume of injector has a direct effect on damping. From the experimental data, it is proved that increasing the number of injectors mounted at each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed at each anti-node point of model chamber, the damping effect of tuned injectors with multi modes agree well with it of tuned injectors with single mode.

Stability Analysis on Solar Tracker Due to Wind (바람에 기인하는 태양광추적구조물의 안정성 해석)

  • Kim, Yong-Woo;Lee, Seoung Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.216-222
    • /
    • 2013
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as heavy fall of snow and high speed wind. Therefore, the solar tracker structure should be designed to have sufficient static and dynamic stiffness against such environmental conditions. In this paper, eigenvalue analysis of the solar tracker is carried out by varying the pose of the solar panel and unsteady flow analysis around a single tracker or multi-trackers arranged in a line is performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate whether there exists an instability of resonance due to vortex shedding. Finite element eigenvalue analysis shows that natural frequencies and modes are almost not influenced by the pose of the solar panel and the finite element flow analysis shows that there does not exist periodic vortex shedding due to the flow around single tracker or multiple solar trackers in a line.

A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures (돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Lee, Seung-Jae;Kim, Jong-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.121-130
    • /
    • 2011
  • Space frame structures have the advantage of constructing a large space structures without column and it may be considered as a shell structure. Nevertheless, with the characteristics of thin and long term of spacing, the unstable problem of space structure could not be set up clearly, and there is a huge difference between theory and experiment. Therefore, in this work, the tangential stiffness matrix of space frame structures is studied to solve the instability problem, and the nonlinear incremental analysis of the structures considering rise-span ratio(${\mu}$) and the ratio of load($R_L$) is performed for searching unstable points. Basing on the results of the example, global buckling can be happened by low rise-span ratio(${\mu}$), nodal buckling can be occurred by high rise-span ratio(${\mu}$). And in case of multi node space structure applying the ratio of load($R_L$), the nodal buckling phenomenon occur at low the ratio of load($R_L$), the global buckling occur a1 high the ratio of load($R_L$). In case of the global buckling, the load of bifurcation is about from 50% to 70% of perfect one's snap-through load.