• 제목/요약/키워드: high heating

검색결과 3,192건 처리시간 0.027초

The Improvement of Physico-mechanical Properties of MDF with High Frequency Heating Technique

  • Youh, Shin-Jae;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.83-93
    • /
    • 2000
  • This study was carried out to improve the physico-mechanical properties of board products by applying the technique of high frequency heating, and find out the optimum conditions of high frequency heating, compared with the technique of hot platen heating. The possibility of isocyanate resin application to board production was also considered to solve the problem of free formaldehyde emission from urea resin which is generally used in wood industry. For this study, 30 mm thick MDP (medium density fiberboard) with isocyanate resin were manufactured by the techniques of hot platen heating, high frequency heating and the combination techniques of both heating methods, and compared in several point of views.

  • PDF

Induction Heating PWM High Frequency Inverter using New Active Auxiliary Resonant Snubber

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Kim, Hong-Sin;Jung, Sang-Hwa;Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제22권3호
    • /
    • pp.40-51
    • /
    • 2008
  • This research presents a new active auxiliary resonant snubber with for induction heating PWM high frequency inverter solving the problem of induction heating PWM high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the active auxiliary resonant snubber with for induction heating PWM high frequency inverter. The inverter circuit which is attempted by the on-off operation of a switch has the effect of reducing the power loss due to soft switching and high frequency switching. This confirms that power regulation is possible on a continuous basis from 0.25[kW] to 2.84[kW] where the duty factor(D) changes from 0.08 to 0.3 under zero current switching which operates by an asymmetrical pulse width modulating control. The power conversion efficiency is 95[%]. Due to these results, the active auxiliary resonant snubber for an induction heating PWM high frequency inverter is considered effective as a source of induction heating.

고온수열된 고강도콘크리트의 압축강도에 관한 실험적 연구 (An Experimental Study on the Compressive Strength of High Strength Concrete Heated High.)

  • 강병희;오창희
    • 한국화재소방학회논문지
    • /
    • 제3권2호
    • /
    • pp.3-10
    • /
    • 1989
  • The results on high strength concrete by heating high are as follows: 1. High strength concrete appeared an estimated 5.5% higher than ordinary concrete in the central temperature of specimens by heating. 2. High strength concrete is higher than ordinary concrete in the decreased width of the ratio on the residual compressive strength by heating high. According to heating temperature and time, the inferred formula of compressive strength on high strength concrete showed: Fc=-0.53Te -2.4Ti +748.4

  • PDF

선상 가열을 위한 고주파 유도 가열의 수치 해석 (Numerical analysis of induction heating for the application of line heating)

  • 강중규;이장현;신종계
    • 대한조선학회논문집
    • /
    • 제37권3호
    • /
    • pp.110-121
    • /
    • 2000
  • 선상가열의 열원으로는 가스 가열법, 고주파 유도 가열법, 그리고 레이저 가열법 등이 사용될 수 있다. 가스 가열법은 많은 조선소등에서 사용되고 있으나 가열 후 얻어지는 잔류변형을 제어하는데 많은 어려움이 있다. 고주파 유도 가열법은 비교적 정확한 변형량 제어가 가능하다는 장점을 가지고 있어서 새로운 선상가열 열원으로서 활용될 수 있을 것이다. 본 연구에서는 고주파 유도가 열법을 이용한 선상 가열의 변형 특성 및 가열장치의 특성을 파악하기 위한 기본단계로써 고주파 유도가열에 의한 열변형 과정에 대한 해석을 시도하였다. 전자장 해석과 와전류 해석, 와전류에 의하여 판에 발생하는 온도 분포, 그리고 열탄소성 변형 해석을 수행하였다.

  • PDF

유도가열 증기발생장치의 온도제어 (A Study on the Temperature Control of Vapor System Using Induction Heating)

  • 신대철;유재훈
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.117-123
    • /
    • 2010
  • 제안한 유도가열 시스템은 증류탑 장치에 사용되는 특수적층 규칙충진체에 의한 열 교환기술과 IH(Induction-Heating)전자유도가열용의 특수한 고주파 전력회로 기술을 응용한 차세대 가열방식이다. 본 전자유도 유체가열기술은 IGBT대응의 고주파 인버터를 사용하여 상용교류로부터 수[kHz]의 고주파 교류를 발생시킬 수 있다. 공진형 고주파 인버터를 사용함으로 고성능, 고효율의 시스템화가 가능하다. 본 논문에서는 주파수 범위가 20[kHz]에서 44[kHz]인 고주파 공진형 인버터을 이용하여 증기를 발생시키는 유도가열시스템에 대해 제안한 온도제어에 대하여 기술하고자 한다.

국부가열용 고주파 유도가열 특성에 관한 연구 (A Study on Characteristic of High Frequency Induction Heating for Local Heating)

  • 진형국;이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.60-60
    • /
    • 2010
  • Since the curved hull plate was made by a series of manufacturing process including cold bending, manual local heating and correction work, the accuracy of curved plate strongly depends on the proficiency of worker. So the demands on the automatic local heating system for curved hull plate have continuously increased and the various researches relevant to it have been performed. Generally, the heat sources used for local heating were flame and induction heat. In terms of initial cost, flame heating is in a better favorable position than induction heating. However, from the viewpoint of the control of heat, induction heating has more advantage. So the various researches related to apply the induction heating to the automatic forming system has been performed. The purpose of this study is to establish the proper capacity of high frequency induction heating system for forming the curved hull plate. In order to do it, the proper coil shape for local heating was designed and the efficiency of induction heating system was determined by comparing of temperature results obtained by FEA and experiment. With the results, the extensive FEA was performed to identify the effect of heated plate dimension, cooling method and the capacity of induction heating system on the amount of heat loss introduced by induction heating. Based on the results, the proper capacity of high frequency induction heating system was proposed.

  • PDF

고주파 유도가열을 사용한 급속 금형가열에 관한 연구 (A Study on Rapid Mold Heating System using High-Frequency Induction Heating)

  • 정희택;윤재호;박근;권오경
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

고주파 유도가열을 이용한 선상가열 시 각 변형 예측에 관한 연구 (A study on the prediction of the angular distortion in line heating with high frequency induction heating)

  • 박동환;진형국;박성식;신상범
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.80-86
    • /
    • 2015
  • The purpose of this study is to establish the predictive method of the angular distortion caused by the line heating process with high frequency induction heating. In order to do it, the heat input model for the high frequency induction heating system was established through comparing the temperature evaluation results obtained by both FEA and experiment. The critical heating conditions to prevent the degradation of the work piece with various thicknesses were identified by FEA and microstructure test results. Under the critical heating conditions, the extensive line heating tests were performed. According to the test results, it was found that the angular distortion behavior of the heated plates could be defined as the function of heat intensity and the rigidity of heated plate. In addition, it was clarified that the angular distortion strongly depended on the size of test specimen such as the length and the width of the heated plate. Based on these results, the predictive equation for the angular distortion was established with the function of heat intensity, bending rigidity and size of heated plate.

Novel Electromagnetic Induction Eddy Current DPH based Continuous Pipeline Fluid Heating using Soft Switching PWM High Frequency Inverter

  • Nam, Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.305-309
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction eddy current based fluid heating appliance using voltage-fed quasi resonant zero voltage soft switching PWM high-frequency inverter using IGBTs, which can operate at a constant frequency variable power regulation scheme. The promising simple high efficient low noise inverter type electromagnetic induction eddy current based pipeline fluid heating appliance is proposed for saturated steam generator, superheated steam generator, hot water and hot air producer, metal catalyst heating for exhaust gas cleaning in engine. Under these technological backgrounds, a novel electromagnetic induction eddy current Dual Packs Heater(DPH) based pipeline fluid heating incorporates thin metal layer type package for continuous fluid heating appliances applying two types of voltage-fed quasi load resonant ZVS-PWM high frequency inverter. The unique features of a novel electromagnetic induction eddy current DPH based continuous pipeline fluid heating appliance is illustrated on the basis of simulation and discussed for the steady state operating characteristics and experimental results.

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.