• 제목/요약/키워드: high gain observer

검색결과 99건 처리시간 0.026초

고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계 (Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer)

  • 지민석;김대기;홍교영;안동만;홍승범
    • 한국항행학회논문지
    • /
    • 제17권1호
    • /
    • pp.107-114
    • /
    • 2013
  • 본 논문에서는 무인항공기 터보제트 엔진의 가속도를 제어하는 제어기를 제안한다. 압축기 회전 속도를 추정하기 위해 고이득 관측기를 사용하고 퍼지 추론 기법과 PID 제어 알고리즘을 적용하는 터보제트 엔진 제어기를 설계한다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 퍼지 PID 제어기로 생성한다. 기준 가속도를 설정하고 연료유량 제어를 퍼지추론에 의해 정하도록 한다. 제안된 제어기의 성능을 확인하기 위해 MATLAB을 사용한 컴퓨터 시뮬레이션을 수행하였다.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

SDRE controller considering Multi Observer applied to nonlinear IPMC model

  • Bernat, Jakub;Kolota, Jakub;Stepien, Slawomir
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Ionic Polymer Metal Composite (IPMC) is an electroactive polymer (EAP) and a promising candidate actuator for various potential applications mainly due to its flexible, low voltage/power requirements, small and compact design, and lack of moving parts. Although widely used in industry, this material requires accurate numerical models and knowledge of optimal control methods. This paper presents State-Dependent Riccati Equation (SDRE) approach as one of rapidly emerging methodologies for designing nonlinear controllers. Additionally, the present paper describes a novel method of Multi HGO Observer design. In the proposed design, the calculated position of the IPMC strip accurately tracks the target position, which is illustrated by the experiments. Numerical results and comparison with experimental data are presented and the effectiveness of the proposed control strategy is verified in experiments.

전정기관 자극용 회전자극기를 위한 PMSM의 정밀 속도제어 (Precision Speed Control of PMSM for Stimulation of the Vestibular System Using Rotatory Chair)

  • 이태호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.628-631
    • /
    • 2000
  • A new control method for precision robust speed control of a PMSM(Permanent Magnet Synchronous Motor) using load torque observer is presented. With this system we can obtain more reliable eye moving singal(nystagmus) Until now rotating chair system which is called 2D-optokinetic stimulator is used to make dizzincess. However an inclined rotating chair system witch is 3D-optokinetic stimulator is needed to obtain the precise dizziness data. This 3D-optokinetic sitimulator include unbalanced load aused by unbalanced center of mass. For this case new compensation method is considered to obtain robust speed control using load torque observer. To reduce the effect of this disturbance we can use dead-beat observer which has high gain. The application of the load torque observer is published in [1] for position control. A problem of using speed information such as amplifying effect of noise is reduce by moving average process. The experimental results are depicted in this paper to show the effect of this proposed algorithm.

  • PDF

고배속 광디스크 적용을 위한 외란 관측기 설계 (Disturbance Observer Design for a High Speed Optical Disk Drive)

  • 이주상;최진영;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1170-1175
    • /
    • 2003
  • Recently, the disturbance caused by an optical disk vibration and the external vibration/shock are more serious problem in an optical disk drives (ODD) as an ODD become small size and rotation speed increases. The conventional controller cannot cope with the mentioned problems properly when the disturbance and vibration are larger than some range. Therefore, we propose a new control scheme using a disturbance observer (DOB) and it can control the aforementioned problems. The designed the controller is applied to a commercial ODD in focusing direction, then its validity is proved by experimental method. By rising the disturbance observer theory, the focusing performance is conspicuously improved in the presence of sinusoidal vibrations or a shock disturbance. This algorithm also applies to a tracking structure also, because focusing structure is very similar to it.

  • PDF

The Study of Gain Optimization of Sliding Model Controller with Sliding Perturbation Observer by using of Genetic Algorithm

  • K.S. You;Park, M.K.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.495-495
    • /
    • 2000
  • The Stewart platform manipulator is a closed-kinematis chain robot manipulator that is capable of providing high st겨ctural rigidity and positional accuracy. However, this is a complex structure, so controllability of the system is not so good. In this paper, it introduces a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the slate and the perturbation w.hich is integrated into a variable structure controller(VSC) structure. The combination of controller/observer gives rise to the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). The optimal gains of SMCSPO are easily obtained by genetic algorithm. Simulation and experiment are presented in order to apply to the stewart platform manipulator. There results show highly' accuracy and performance.

  • PDF

SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구 (A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM)

  • 오주환;이진우;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권12호
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구 (A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation)

  • 박기홍;김태성;김경화;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

외란관측기법과 최대최소 제어방법을 이용한 시변 입력 외란을 갖는 선형 시스템의 점근 안정화 (Asymptotic Stabilization of Linear Systems with Time-Varying Input Disturbances Using Disturbance Observer Techniques and Min-Max Control Method)

  • 송성호;김백섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.15-21
    • /
    • 2004
  • This paper deals with asymptotic stabilization problems for linear systems with time-varying input disturbances. In order to eliminate the influence of a disturbance on the system, a disturbance observer is designed and the time-varying disturbance can be rejected using its estimated value. Since the disturbance observer is kind of low-pass filter, it has inevitably estimation errors. To eliminate the inflences on the performance due to these errors, the additional control is designed based on these estimation errors using a well-known min-max control method. It is shown that the asymptotic stability of the closed-loop system is guaranteed. In general, the min-max control method requires the switching of control inputs and the switching magnitude of the control input is determined by the disturbance estimation error bounds. As the error bounds can be made arbitrarily small by choosing the high gain for the disturbance observer, the control method suggested in this paper can reduce the chattering phenomena as small as possible. Therefore, it has superior performance to the existing ones.