• Title/Summary/Keyword: high frequency moisture sensor

Search Result 14, Processing Time 0.018 seconds

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

The Application of Octa-Substituted Metallophthalocyanine Langmuir-Blodgett films for $NO_2$ Measurement (수정진동자를 이용한 프탈로시아닌 LB박막의 $NO_2$ 감지 특성)

  • Kwon, H.J.;Lee, Y.J.;Chang, Y.K.;Kim, J.D.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.254-262
    • /
    • 1998
  • Multilayer Langmuir-Blodgett (LB) films coated on quartz crystal microbalance (QCM) of octa-substituted metallophhtalocyanines ($MPc(OEH)_8$, M = Cu, Co, and Sn) and dihydrogen phthalocyanines ($H_2Pc(OEH)_8$) were used to quantify $NO_2$ concentrations. They were exposed to various concentrations of $NO_2$ in dry $N_2$. Among the four phthalocyanines we tested, the metal-free $H_2Pc(OEH)_8$ was observed to be most sensitive to $NO_2$. However, its LB film showed a partially irreversible behavior, that is part of the frequency change due to $NO_2$ adsorption could not be recovered even after purging with pure $N_2$ gas for an extended period. Examining the spectra of NMR and FTIR revealed fact that the irreversible portion of frequency change was due to ether groups in the linkage between side chains and the Pc unit. In order to remove the effect of such initial deactivation, on $NO_2$ quantification experiment, a freshly fabricated LB film was treated at a high concentration of $NO_2$ so that the ether sites were saturated. A pretreated LB film showed a reproducible performance for repeated uses. The $CuPc(OEH)_8$ LB film showed a satisfactory sensing performance down to as low as 4 ppm. For the $H_2Pc(OEH)_8$ LB film, the lower detection limit was found to be 35ppb of $NO_2$. In order to make the experimental condition more realistic, the carrier gas, dry nitrogen, was replaced by air. It was observed that the presence of oxygen, a weak electron acceptor, reduced the sensitivity and thus increased the sensing limit to hundreds of ppb. Results of experiments with moisture added showed that the interference of moisture was quite severe.

  • PDF

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.