• Title/Summary/Keyword: high frequency material characteristics

Search Result 410, Processing Time 0.043 seconds

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF

Enhanced Electro-optical Characteristics of Liquid Crystal Shutter with a Dual Frequency Liquid Crystal Material (이중 주파수 액정을 적용한 액정 셔터의 고속 응답 특성)

  • Kim, Dae Soo;Han, Seung Hwan;Bae, Geon;Jhun, Chul Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.303-306
    • /
    • 2014
  • In this paper, by using a dual frequency liquid crystal material, we propose a liquid crystal device with a fast response characteristics. The dual frequency liquid crystal material has a positive dielectric anisotropy value at a low frequency. With a high frequency, the dielectric anisotropy becomes negative. Therefore, the relaxation process is governed by not only the elastic deformation, but also the dielectric interaction. The measured decay time and rise time were 0.88 ms and 0.33 ms, respectively.

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

Brightness Characteristics by Applied Frequency for External Electrode Fluorescent Lamp (외부전극형 형광램프의 입력 주파수에 따른 휘도 특성)

  • Choi, Yong-Sung;Cha, Jae-Chea;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.75-78
    • /
    • 2006
  • An external electrode fluorescent lamps (EEFLs) have the advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Studies on the operation of external electrode fluorescent lamps have focused mainlyon its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, an EEFL presented the possibility of using it as a light source for backlights. However, because an EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significantly affected by frequency. Thus, this study verifies the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examines the relationship between the change in the EEFL frequency and brightness by measuring the optical. characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

Electrical and Memory Switching Characteristics of Amorphous Thin-Film $As_{10}Ge_{15}Te_{75}$ Thin-Film (비정질 $As_{10}Ge_{15}Te_{75}$ 박막의 전기적 및 메모리 스위칭 특성)

  • 이병석;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.234-237
    • /
    • 1996
  • The amorphous chalogenide semiconductors are new material in semiconductor physics. Their properties, especially electronic and optical properties are main motives for device application. Amorphous As$_{10}$Ge$_{15}$ Te$_{75}$material has the stable ac conductivity at high frequency and the dc memory switching property. At higher frequency than 10MHz, ac conductivity of As$_{10}$Ge$_{15}$ Te$_{75}$ thin film is much higher than below frequency and independent of temperature and frequency. If the dc voltages are applied between edges of thin film, one can see the dc memory switching phenomenon, in other words the dc conductivity increases quite a few of magnitude after the threshold voltage is applied. Using the stable ac conductivity at high frequency and the increase of conductivity after dc memory switching, As$_{10}$Ge$_{15}$ Te$_{75}$thin film is considered as new material for microwave switch devices.vices.es.vices.

  • PDF

Optical Characteristics of EEFL (External Electrode Fluorescence Lamp) for Large Size BLU (대화면 BLU용 EEFL의 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-76
    • /
    • 2006
  • An external electrode fluorescent lamp (EEFL) has an advantage of a long lifetime in the ear1y stages of the study on plasma discharge, interest in the lamp continues. Researches on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, EEFL presented the possibility of using it as a light source for back-lights. However, because EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significant1y affected by frequency. Thus, this study verified the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examined the relationship between the change in the EEFL frequency and brightness by measuring the optical characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

Frequency Response Characteristics of Fluorescent OLED with Alternating Current Driving Method (교류구동방식에 의한 형광 OLED의 주파수 응답 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • To study the frequency response characteristics of alternating-current-driven organic light-emitting diodes (OLEDs), we fabricated blue-fluorescent OLEDs and analyzed their electroluminescent characteristics according to the alternating current voltage and frequency. The luminance-frequency characteristics of alternating-current-driven OLED was similar to that of a low-pass filter, and the luminance of high-voltage OLED decreased at higher frequency than low-voltage OLED. The luminance characteristics of the OLED according to the frequency is due to the capacitive reactance in the OLED, generated during the alternating current driving. The frequency response characteristics of the OLED according to the voltage is due to the decrease in internal resistance of the organic layer. In addition, the negative voltage component of the alternating current did not affect the frequency response of the OLED. Therefore, the electroluminescent characteristics of OLED with an alternating current power of 60 Hz are not influenced by the frequency.

An Effect Absorption Property of Compound Absorption Structure on the Membranous and the Back Resonator type (표면재 및 배후 다공질재의 유형에 따른 복합 흡음구조의 흡음특성)

  • 김태훈;주문기;오양기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.65-71
    • /
    • 2001
  • Absorbers such as porous materials and panels have limited absorption characteristics to some frequency bands. There is a need for absorbers with high absorption coefficients in a wide frequency ranges to make good response of room acoustics. This is almost impossible for a single absorption material. Composite absorption structure with cover, porous material. and air gap is known to have those wide frequency characteristics. In this basis. various composite absorption structures are measured and investigated as wide range absorption structures. Measurements are performed according to an international standard, ISO 354. Various surface types such as wooden slits, wood/steel perforated panels are selected as surface covers, and also various porous materials such as polyurethanes, polyesters, and glasswools are used inside the covers. Result shows that the area of void parts of surface materials is critical to high frequency absorptions, and thickness of air gaps are critical factor of the peak absorptions of low frequency bands.

  • PDF

A study on the resonant frequency of ceramic fitter using energy trapping effect (에너지 트래핑 효과를 이용한 세라믹 필터의 공진주파수에 관한 연구)

  • 박기엽;김원석;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.139-142
    • /
    • 1994
  • Ceramic filter using energy trapping pheonomenon is used bandpass filter at high frequency. In this paper, we analyzed theoretically ceramic filter characteristics of TS vibrational mode and also investigated experimentally it. The ceramic plate is PZT-4 poled in the thickness direction of Valpey Fisher Co. and electroded with two pairs. We analyzed the characteristics in appling to the all constant of ceramic and electrode material each other and vibrational mode. We also measured resonant frequency and bandpass width of the ceramic filter changing the thickness of ceramic plate and electrode spacing. Comparing of falter characteristics, theoretical value nearly corresponded with experimental value. So we saw that we can expect filter characteristics changing the thickness of ceramic plate and electrode spacing.