• Title/Summary/Keyword: high force damper

Search Result 99, Processing Time 0.026 seconds

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

High-performance Magneto-rheological Damper Design (고성능 MR댐퍼의 설계)

  • 이종석;백운경
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.470-477
    • /
    • 2004
  • This study shows the design process of a MR damper for semi-active suspension systems. Damping force characteristics of the designed damper was predicted through the flow analysis and magnetic analysis. The predicted results were compared with the experimental results and the initial design specification was modified according to the results.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.

Improvement of Oil Seal Geometry to Improve Durability of Lateral Damper of Electric Multiple Unit (전동차 횡댐퍼 내구성 향상을 위한 오일씰 형상 개선)

  • Kim, Yong Wook;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.90-97
    • /
    • 2018
  • As the result(also after it's been carried out the damping force test with 800ea lateral dampers of 50ea trainset from entering heavy maintenance workshop to implement heavy maintenance inspection cycle, there were 86.25%(650ea) which were out of $350kg{\pm}15%$ of the standard value of damping force compared to the reference value. After the implementation of heavy maintenance inspection cycle, it's been examined damping force test with total samples 32ea(samples 8ea per a trainset) from actual running EMU 4ea trainset. As the result, percent defective was 84.4%(27ea), which was a very high level. System. The lateral damper's the failure cause of damping force defective was oil leakage caused by tearing crack of oil seal and foreign material in oil iron 473 ~ 1932 times higher than that of new oil, copper 36 ~ 98 times higher than that of new oil reduced oil amount cycling damping valve. It resulted from the change cause of damping force. In the static analysis on the shape of lateral damper oil seal's the existing and improved product, the stress of the improved product was smaller than that of the existing product. In the fatigue analysis, the existing product showed a low life in the upper area. However, in case of the improved product, it could be confirmed that the destruction did not occur up to the specified 1.0e + 006 cycles and the lifetime was further improved in most areas.

Response and control of jacket structure with magneto-rheological damper at multiple locations/combinations

  • Syed, Khaja A.A.;Kumar, Deepak
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.201-221
    • /
    • 2018
  • In this paper a comprehensive study for the structural control of Jacket platform with Magneto-Rheological (MR) damper is presented. The control is implemented as a closed loop feedback of the applied voltage in the MR Damper using fuzzy logic. Nine cases of combinations with MR damper are presented to complete the work. The selection of the MR damper (RD 1005-3) is based on the operating parameters (i.e., the range of frequency and displacement). Bingham model is used to obtain the control forces. The damping co-efficient of the model is obtained using empirical relationship between the voltage in the MR damper and input velocity from the structural members. The force acting on the structure is obtained from Morison equation using P-M spectrum. The results show that the reliable control was obtained when there was a continuous connection of multiple MR dampers with the lower levels of the structure. Independent MR dampers at different levels provided control within a range, while the MR dampers placed at alternate positions gave very high control.

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System (전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능)

  • Chung, Hee-San;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won;Byeon, Ji-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

Analysis of Isolation System in Distinct Multi-mechanism HIF Device (이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석)

  • Choe Eui Jung;Kim Hyo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.