• 제목/요약/키워드: high energy density

검색결과 2,416건 처리시간 0.036초

Effects of caloric restriction with varying energy density and aerobic exercise on weight change and satiety in young female adults

  • Song, Sae-Won;Bae, Yoon-Jung;Lee, Dae-Taek
    • Nutrition Research and Practice
    • /
    • 제4권5호
    • /
    • pp.414-420
    • /
    • 2010
  • This study examines the combined effects of caloric restriction on body composition, blood lipid, and satiety in slightly overweight women by varying food density and aerobic exercise. Twenty-three women were randomly assigned to one of two groups for a four-week weight management program: the high-energy density diet plus exercise (HDE: n = 12, $22{\pm}2$ yrs, $65{\pm}7$ kg, $164{\pm}5$ cm, $35{\pm}4%$ fat) and low-energy density diet plus exercise (LDE: n = 11, $22{\pm}1$ yrs, $67{\pm}7$ kg, $161{\pm}2$ cm, $35{\pm}4%$ fat) groups. Subjects maintained a low-calorie diet (1,500 kcal/day) during the program. Isocaloric ($483{\pm}26$ for HDE, $487{\pm}27$ kcal for LDE) but different weight ($365{\pm}68$ for HDE, $814{\pm}202$ g for LDE) of lunch was provided. After lunch, they biked at 60% of maximum capacity for 40 minutes, five times per week. The hunger level was scaled (1: extremely hungry; 9: extremely full) at 17:30 each day. Before and after the program, the subjects' physical characteristics were measured, and fasting blood samples were drawn. The daily energy intake was $1,551{\pm}259$ for HDE and $1,404{\pm}150$ kcal for LDE (P > 0.05). After four weeks, the subjects' weights and % fat decreased for both LDE (-1.9 kg and -1.5%, P < 0.05) and HDE (-1.6 kg and -1.4%, respectively, P < 0.05). The hunger level was significantly higher for HDE ($2.46{\pm}0.28$) than for LDE ($3.10{\pm}0.26$) (P < 0.05). The results suggest that a low-energy density diet is more likely to be tolerated than a high-energy density diet for a weight management program combining a low-calorie diet and exercise, mainly because of a reduced hunger sensation.

금속표면 특성향상을 위한 laser peening 효과 (The Laser Peening Effect for Improving the Surface Properties of Metals)

  • 정진만;백성훈;김정수;이상배
    • 한국레이저가공학회지
    • /
    • 제11권3호
    • /
    • pp.5-9
    • /
    • 2008
  • The effect of a laser peening on the surface residual stress of SUS 304 was investigated using a second harmonic Nd:YAG laser beam. The energy density and the diameter of the laser beam were $400mJ/mm^2$ and about 1mm, respectively. According to the test results, the effect of a laser peening for improving the surface residual stress was not big enough to induce a high compressive stress on the SUS 304 surface. This is thought to be attributed to the small radius of the laser beam used in this study, even though its energy density is big enough. From this study, it can be concluded that to induce a recognizably high compressive stress on a metal surface, the energy density as well as the size (diameter) of the laser beam should be large enough to generate surface plasma with a high energy to have a big impact to a metal surface.

  • PDF

High Power Lasers and Their New Applications

  • Izawa, Yasukazu;Miyanaga, Noriaki;Kawanaka, Junji;Yamakawa, Koichi
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.178-185
    • /
    • 2008
  • Recent progress in high power lasers enables us to access a regime of high-energy-density and/or ultra-strong fields that was not accessible before, opening up a fundamentally new physical domain which includes laboratory astrophysics and laser nuclear physics. In this article, new applications of high-energy and ultra-intense laser will be reviewed.

Availability of 2-Dimensional Vector Magnetic Property for High Flux Density Machines

  • Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.1-5
    • /
    • 2005
  • The vector magnetic property is defined as the relationship between the magnetic field strength vector H and the magnetic flux density vector B. It is very important for the development of high efficiency and the high-density electric machines. The electrical steel sheet for the machine core shows the remarkable vector behavior by the high magnetic flux density level. In this paper, the magnetic characteristic analysis using E&S2 model is introduced as the useful technology for the design and development.

USE OF A CENTRIFUGAL ATOMIZATION PROCESS IN THE DEVELOPMENT OF RESEARCH REACTOR FUEL

  • Kim, Chang-Kyu;Park, Jong-Man;Ryu, Ho-Jin
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.617-626
    • /
    • 2007
  • A centrifugal atomization process for uranium fuel was developed in order to fabricate high uranium density dispersion fuel for advanced research reactors. Spherical powders of $U_3Si$ and U-Mo were successfully fabricated and dispersed in aluminum matrices. Thermal and mechanical properties of dispersion fuel meat were characterized. Irradiation tests at the research reactor HANARO confirm the excellent performance of high uranium density dispersion fuel.

레이저 출력에 따른 레이저예열선삭된 질화규소의 기계적 특성 (Mechanical Properties of Silicon Nitride Laser-Assisted Machined by Laser Power)

  • 김종도;이수진;신동식;서정;이제훈
    • 한국레이저가공학회지
    • /
    • 제12권4호
    • /
    • pp.12-16
    • /
    • 2009
  • The engineering ceramic is one of the materials advantageous in various conditions with high strength, endurance at high temperature, abrasion resistance and corrosion resistance, etc. However, due to high strength and high brittleness, ceramic incurs high costs and long time on finishing process required after sintering. So a process for obtaining wanted measurements of them has been studied using the high temperature which makes ceramics softened and heat affected recently. This study makes an estimate of laser-assisted machining (LAM) if an economically practical process for manufacturing precision silicon nitride ceramic parts using laser beam. In this study, mechanical properties of silicon nitride at high temperature were observed. And during the LAM, it was observed that cutting force and tool wear were reduced and oxidation of machined surface was increased according to a increase of laser power.

  • PDF

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

초단파 레이저 조사시 티슈 열완화 시간 분석 (Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation)

  • 김경한;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.