• Title/Summary/Keyword: high electric field

Search Result 1,502, Processing Time 0.035 seconds

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Development of class I surge protection device for the protection of offshore wind turbines from direct lightning (해상풍력발전기 직격뢰 보호용 1등급 바리스터 개발)

  • Geon Hui Lee;Jae Hyun Park;Kyung Jin Jung;Sung-Man Kang;Seung-Kyu Choi;Jeong Min Woo
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.50-56
    • /
    • 2023
  • With the abnormal weather phenomena caused by global warming, the frequency and intensity of lightning strikes are increasing, and lightning accidents are becoming one of the biggest causes of failures and accidents in offshore wind turbines. In order to secure generator operation reliability, effective and practical measures are needed to reduce lightning damage. Because offshore wind turbines are tall structures installed at sea, the possibility of direct lightning strikes is very high compared to other structures, and the role of surge protection devices to minimize damage to the electrical and electronic circuits inside the wind turbine is very important. In this study, a varistor, which is a key element for a class 1 surge protection device for direct lightning protection, was developed. The current density was improved by changing the varistor composition, and the distance between the electrode located on the varistor surface and the edge of the varistor was optimized through a simulation program to improve the fabrication process. Considering the combined effects of heat distribution, electric field distribution, and current density on the optimized varistor surface, silver electrodes were formed with a gap of 0.5 mm. The varistor developed in this study was confirmed to have an energy tolerance of 10/350 ㎲, 50kA, which is a representative direct lightning current waveform, and good protection characteristics with a limiting voltage of 2 kV or less.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives (전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰)

  • Lee, Sung Jin;Cha, Eun Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.69-79
    • /
    • 2016
  • Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

Some Aspects of High Lysine Maize Breeding using Opaque-2 Gene (Opaque-2 인자를 이용한 고라이신 옥수수의 육종)

  • Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1969
  • Several field and sweet corn varietiea from several sources were crossed with a variety carrying the opaque-2 gene to determine the phenotypic interactions in the breeding of high lysine maize. Although opaque-2 lines showed lower protein content than the corresponding normal varieties, there was no correlation between the protein levels of the two types. opaque-2 maize contained more lysine, but no relationship was found between the protein content and the lysine content of either normal or opaque-2 types, suggesting that high lysine corn using the opaque-2 gene may be developed independently from the protein content. The F2 segregation ratios for normal and opaque-2, 100-kernel weights, percentage seed set, opaque-2 phenotype, disease susceptibility, and the relationship between protein and lysine content of normal and opaque-2 were investigated. The determinations and observations were made on the F2, F3, and BC1 Lysine content was determined by the ion exchangeresin combined with paper chromatography method. Most crosses segregated in a 1-opaque-2 : 3-normal ratio as expected. Opaque-2 segregates were lighter than the normal type and smaller in size. A mottled phenotype of opaque-2 maize observed in the Philippines yellow endersperm. In some varieties opaque-2 maize was very susceptible to the ear and kernel rot disease. No. 5(female) and opaque-2(male). Selectlon of a double mutant of waxy and opaque-2 by using the iodine technique and electric lamp was discussed. opaque-2 and floruy-2 were not allels. Different percentage of seed set were observed in the segregation of aewx crossed with opaque-2. An unusual gametophytie relationship was involved in a cross between Glutinous.

  • PDF

Analysis of Penetration Phenomenon of High Altitude Electromagnetic Pulse into Buried Facilities with Various Moisture Content and Depth (수분 함유량 및 지하 구조물 깊이에 따른 고고도 전자기파(HEMP) 투과 현상 분석)

  • Kang, Hee-Do;Oh, Il-Young;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.644-653
    • /
    • 2013
  • In this paper, a formulation for obliquely incident electromagnetic wave has been presented for an analysis of highpower electromagnetic pulse penetration into multilayered dispersive media. Based on generalized models of measured dielectric constants and propagation channels reflecting the Earth's general features, the propagation phenomenon of the obliquely incident early-time(E1) high altitude electromagnetic pulse(HEMP) is analyzed. In addition, the polarization and critical angle are also considered. It is found that the total reflection occurs at an incident angle of about 38 degrees at the soil-rock interface, and that the parallel-polarized E1 HEMP penetrates better than the perpendicular-polarized one. The peak level of the penetrating electric field is found to be 5.6 kV/m at normal incidence, regardless of the type of polarization, and E1 HEMP is greatly reduced near the critical angle. Moreover, the penetrating E1 HEMP is analyzed as a variation of moisture content and depth of materials, resulting E1 HEMP could be useful in determining the levels of shielding required for buried facilities.

POTENTIAL APPLICATIONS FOR NUCLEAR ENERGY BESIDES ELECTRICITY GENERATION: A GLOBAL PERSPECTIVE

  • Gauthier, Jean-Claude;Ballot, Bernard;Lebrun, Jean-Philippe;Lecomte, Michel;Hittner, Dominique;Carre, Frank
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source tree of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80% of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: ${\bullet}$ Timely adapted licensing process and regulations, codes and standards for such application and design ${\bullet}$ An industry oriented R&D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector ${\bullet}$ Identification of an end user(or a consortium of) willing to fund a FOAK

Quality Changes and Pasteurization Effects of Citrus Fruit Juice by High Voltage Pulsed Electric Fields (PEF) treatment (고전압 펄스 전기장 처리에 의한 감귤주스의 품질변화)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Hong, Hee-Do;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.635-641
    • /
    • 2003
  • A non-thermal pasteurization technology, high Pulsed Electric Field (PEF) has been thought to be a new alternative processing technology instead of heating. The objective of this study was to examine and compare the effect of PEF and High Temperature Short Time (HTST) treatments on the physicochemical, microbiological and sensory characteristics of citrus juices. Total sugar and titratable acidity values of fresh citrus juice and two treatments were not significantly different each other at p<0.05. The concentration of vitamin C in fresh citrus juice $(31.2{\pm}0.59\;mg%)$ was not significantly different with the value of PEF treatment $(29.4{\pm}0.75\;mg%)$ but was significantly higher than the value of HTST treatment $(27.4{\pm}0.75\;mg%)$. The color values (L, a, and b) in PEF treatment were significantly lower than the fresh citrus juice, but were higher than the values of HTST treatment. Both total bacterial cell counts $(6.65\;{\pm}\;0.08\;log_{10}(cfu/mL))$ and yeast counts $(7.79{\pm}0.07\;log_{10}(cfu/mL))$ in fresh citrus juice were significantly reduced by PEF $(1.39{\pm}0.14,\;2.42{\pm}0.1\;log_{10}(cfu/mL))$ as well as HTST treatment (0, 0). PE activity of fresh citrus juice $(1.3{\pm}0.12\;units/mL)$ was significantly reduced by PEF treatment $(0.11{\pm}0.01\;units/mL)$ and was totally inactivated by HTST treatment. Sensory evaluation scores in flavor, taste and overall acceptability between the fresh and PEF treated citrus juices $(7.2{\sim}7.5)$ were not significantly different but the values of HTST treatment $(5.1{\sim}5.8)$ were lower than others. Consequently, PEF treatment is thought to be a good alternative pasteurization method for fresh citrus juice to HTST treatment due to its strong pasteurization effect, reduced destruction of nutrients and good sensory characteristics.

Fabrications and Analysis of Schottky Diode of Silicon Carbide Substrate with novel Junction Electric Field Limited Ring (새로운 전계 제한테 구조를 갖는 탄화규소 기판의 쇼트키 다이오드의 제작과 특성 분석)

  • Cheong Hui-Jong;Han Dae-Hyun;Lee Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1281-1286
    • /
    • 2006
  • We have used the silicon-carbide(4H-SiC) instead of conventional silicon materials to develope of the planar junction barrier schottky rectifier for ultra high breakdown voltage(1,200 V grade). The substrate size is 2 inch wafer, Its concentration is $3*10^{18}/cm^{3}$ of $n^{+}-$type, thickness of epitaxial layer $12{\mu}m$ conentration is $5*10^{15}cm^{-3}$ of n-type. The fabticated devices are junction barrier schottky rectifier, The guard ring for improvement of breakdown voltage is designed by the box-like impurity of boron, the width and space of guard ring was designed by variation. The contact metals to rectify were used by the $Ni(3,000\:{\AA})/Au(2,000\:{\AA})$. As a results, the on-state voltage is 1.26 V, on-state resistance is $45m{\Omega}/cm^{3}$, maximum value of improved reverse breakdown voltage is 1180V, reverse leakage current density is $2.26*10^{-5}A/CM^{3}$. We had improved the measureme nt results of the electrical parameters.

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF