• Title/Summary/Keyword: high dose amino acid

Search Result 36, Processing Time 0.024 seconds

Effect of 4-Nonylphenol on the Gene Expression of Retinol-Binding Protein in the Rockfish, Sebastes schlegeli (조피볼락(Sebastes schlegeli)의 Retinol-Binding Protein의 유전자 발현에 미치는 4-Nonylphenol의 영향)

  • Cho, Hyung-Koo;Jung, Jee-Hyun;Lee, Je-Yong;Kim, Myung-Hee;Han, Chang-Hee
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2006
  • Retinol-binding protein(RBP) plays an important role in the specific transport of retinol to target cells through the blood stream in higher vertebrates. In order to clarify the effects of 4-nonylphenol(4-NP) on RBP mRNA expression in the rockfish, Sebastes schlegeli which is common in coastal waters of Korea and commercially important species, the cDNA library was constructed from the liver, and a partial fragment of the RBP gene was cloned. The deduced amino acid sequence from the RBP mRNA showed a high homology to the amino acid sequence from Sparus aurata(80%), Oncorhynchus mykiss(72%) or Anguilla anguilla(78%). Effects of 4-NP on RBP and vitellogenin(VTG) mRNA expression level in rockfish were examined by the northern blot analysis. In female and male rockfish injected with 4-NP(10 mg/kg BW, lower dose), there was no changes in the levels of VTG mRNA expression in the liver. The RBP mRNA levels, however, decreased at 48 hours after the injection in male. In the rockfish injected with 4-NP(25 mg/kg BW, higher dose), the level of VTG mRNA expression increased after 24 hours, regardless of sex. The level of RBP mRNA expression decreased at 48 hours after the injection in both sexes. These data indicate that estrogenic mimics such as 4-NP exhibit a contrasting effect on RBP and VTG gene expression in rockfish.

  • PDF

Isolation and Characterization of a 32-kDa Fibrinolytic Enzyme (FE-32kDa) from Gloydius blomhoffii siniticus Venom -Fibrinolytic Enzyme from Gloydius blomhoffii siniticus Venom-

  • Kim, Joung-Yoon;Lee, Seung-Bae;Kwon, Ki Rok;Choi, Suk-Ho
    • Journal of Pharmacopuncture
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2014
  • Objectives: This study was undertaken to isolate a fibrinolytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate its enzymatic characteristics and hemorrhagic activity as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were investigated using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrinolytic enzyme with the molecular weight of 32kDa (FE-32kDa) from Gloydius blomhoffii siniticus showed a fibrin hydrolysis zone at the concentration of 0.2 mg/mL in the fibrin plate assay. The fibrin hydrolysis activity of the enzyme was inhibited completely by ethylenediaminetetraacetic acid (EDTA), ethyleneglycoltetraacetic acid (EGTA), and 1, 10-phenanthroline, thiothreitol and cysteine, and partially by phenylmethanesulfonylfluoride (PMSF). Metal ions such as $Fe^{2+}$ and $Hg^{2+}$ inhibited the fibrin hydrolysis completely, but $Zn^{2+}$ enhanced it. FE-32kDa hydrolyzed ${\alpha}$-chain but did not hydrolyze ${\beta}$-chain and ${\gamma}$-chain of fibrinogen. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into low-molecular-weight polypeptides, but the extent of hydrolysis was limited. FE-32kDa induced hemorrhage beneath back skin of mice at the dose of $2{\mu}g$. Conclusions: FE-32kDa is a ${\alpha}$-fibrin(ogen)olytic metalloprotease that requires $Zn^{2+}$ for fibrinolytic activity and causes hemorrhage, suggesting that the enzyme is not appropriate for use as a clinical pharmacopuncture.

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Park, Soo-Hyun;Koh, Hyun-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.425-434
    • /
    • 1997
  • Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Phospholipase D in Guinea Pig Lung Tissue Membrane is Regulated by Cytosolic ARF Proteins

  • Chung, Yean-Jun;Jeong, Jin-Rak;Lee, Byung-Chul;Kim, Ji-Young;Park, Young-In;Ro, Jai-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.897-905
    • /
    • 2003
  • Phospholipase D (PLD) and ADP-ribosylation factor (ARF) were partially purified on a series of column chromatography, and their biochemical properties were characterized to understand the regulatory mechanism of PLD activation by ARF protein in the antigen-induced immune responses in guinea pigs. Heparin Sepharose and high-Q Sepharose column chromatographies were used for the purification of PLD, and Sephadex G-25, DEAE Sephacel, Source 15 PHE (HIC), Superdex-75, and Uno-Q column chromatographies were used for the purification of ARF. The purified PLD and ARF proteins were identified with anti-rabbit PLD- or ARF-specific antibodies, showing about 64 or 85 kDa for the molecular mass of PLD and 29 or 35 kDa for the sizes of ARF. Partial cDNA of ARF3 was cloned by RT-PCR in guinea pig lung tissue and its nucleotides and amino acids were sequenced. Guinea pig ARF3 showed 92% of nucleotides sequence identity and 100% of amino acid sequence homology with human ARF3. The ARF-regulated PLD activity was measured in the oleate or ARFs-containing mixed lipid vesicles. The purified and recombinant ARF (rARF) activities were assessed with the $GTP{\gamma}S$ binding assay. The PLD activity was induced by oleate in a dose-dependent manner. The purified ARF and recombinant ARF3 increased PLD activity in guinea pig lung tissues. These data show that the activity of membrane-bound PLD can be regulated by the cytosolic ARF proteins, suggesting that ARF proteins in guinea pig lung can act as a regulatory factor in controlling the PLD activity in allergic reaction.

Effects of Gamma Irradiation on the Decontamination of Animal Feeds: Sterilization of Carbohydrate Sources (배합사료 원료에 대한 방사선 살균 효과 ; 탄수화물의 살균)

  • 조한옥;변명우;권중호;이재원;김영배
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.3
    • /
    • pp.97-102
    • /
    • 1987
  • The effects of gamma irradiation on microbiological and physicochemical qualities in raw ingredients (thirteen kinds of cereal grain and their by-product) of mixed feeds were investigated. The total aerobic bacteria counts in the samples were $10^2\;to\;10^6/g$. They were sterlllzed to a undetectable level by 5 to 7 kGy irradiation. Coliforms were contaminated in high levels in all sample, ranging from $10^2\;to\;10^6/g$. They were radiation-llensitive and completely eliminated by irradiation with 3 to 5 kGy. Total fungi, ranging from $10^2\;to\;10^4/g$, mainly osmophiles were identified as Aspergillus and Penicillium. They were eliminated below identification limit by 5 to 7 kGy irradiation. Seven kinds of species, including Aspergillus IkrlJUB. were identified as a potential mycotoxin producers. Physicochemical qualities, such as total amino acid content, total sugar content. TBA value and color difference showed that an optimum dose of irradiation was less detrimental than ethylene oxide fumigation.

  • PDF

Anti-fatigue activity of dripped spent hens chicken essence in ICR mice

  • Ti Chun, Chang;Wei Cheng, Chen;Chao Wei, Huang;Liang Chuan, Lin;Jen Shinn, Lin;Fu Yuan, Cheng
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.307-314
    • /
    • 2023
  • Objective: Chicken essence and branched chain amino acid (BCAA) supplementation has been recognized to significantly relieve fatigue. To obtain chicken essence with high amounts of BCAA, spent hens herein was used to prepare dripped chicken essence (SCE) and compared with commercial dripped chicken essence (CCE) for in vivo anti-fatigue effect. Methods: To determine the effect on anti-fatigue by dripped chicken essence, the exhaustive swimming was performed. Thirty-two 7-week ICR mice were divided into four groups, which included the control group (CG), CCE, SCE-1X and SCE-2X. The mice were given daily oral administration (0.012 mL/g body weight/d). The fatigue index analysis was conducted weekly. Results: The results showed that SCE had a higher BCAA level as expected, and mice treated with dripped chicken essence (CCE and SCE) could significantly improve exercise performance. The lower blood lactate level, blood urea nitrogen level and creatine phosphokinase activity were found in the supplement of SCE group compared with the CCE group, which suggested that the SCE possessed strong anti-fatigue ability. This could possibly be due to the higher content of BCAA. Conclusion: In this study, SCE promoted recovery from physical fatigue in mice and elevated endurance ability. Among them, the double dose (SCE-2X) showed the strongest anti-fatigue ability. Taken together, spent chickens could be a good source of chicken essence to improve the effect of anti-fatigue.

Antioxidant and Anti-inflammatory Activities of Water and the Fermentation Liquid of Sea Tangle (Saccharina japonica) (다시마 물 추출액과 발효액의 항산화 및 항염증 활성)

  • Jung, Kyung Im;Kim, Bo Kyung;Kang, Jeong Hyeon;Oh, Geun Hye;Kim, In Kyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.596-606
    • /
    • 2019
  • The study investigated the physiochemical properties and the antioxidant and anti-inflammatory activities of the sea tangle (Saccharina japonica) in a water extract before (STWE) and after (STFL) fermentation with Lactobacillus brevis. The pH values of STWE and STFL were 6.18 and 4.16, and the sugar contents were $8.50^{\circ}Brix$ and $7.40^{\circ}Brix$, respectively. The main free amino acids of STWE and STFL were glutamic acid, aspartic acid, and alanine, and the ${\gamma}$-amino butyric acid (GABA) content was increased by fermentation. The total polyphenol contents of STWE and STFL were 498.29 and 615.77 mg gallic acid equivalent (GAE)/ml, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of STWE and STFL were markedly increased in a dose-dependent manner, and revealed about 89.89% and 96.94% activities, respectively, at 10% concentration (p<0.05). The superoxide dismutase (SOD) activities of STWE and STFL were also markedly increased in a dose-dependent manner, and the activity of STFL was significantly increased when compared with STWE (p<0.05). The anti-inflammatory activity was examined in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. STWE and STFL decreased the production of reactive oxygen species (ROS), which had levels of about 189.90% and 174.69% at 1% concentration, respectively (p<0.05). The contents of pro-inflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-{\alpha}$) and interleukin-6 (IL-6), were decreased more by addition of STFL than by addition of STWE. The STWE and STFL showed high antioxidant and anti-inflammatory activity, and these activities were increased by fermentation. Therefore, sea tangle extracts can be used as functional food materials.

Antioxidant Activity of Royal Jelly Hydrolysates Obtained by Enzymatic Treatment

  • Gu, Hyejung;Song, In-Bong;Han, Hye-Ju;Lee, Na-Young;Cha, Ji-Yun;Son, Yeon-Kyong;Kwon, Jungkee
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.135-142
    • /
    • 2018
  • Recently, research on the processing of raw functional materials with the aim of improving various physiological activities has been conducted. In this study, we investigated the antioxidant activity of royal jelly (RJ) hydrolysates obtained from three commercial proteases. Enzyme-treated royal jelly (ERJ), in which the RJ hydrolysates were converted into easy-to-absorb shorter chain monomers through the removal of two known allergen proteins, showed no difference in the content of (E)-10-hydroxydec-2-enoicacid (10-HDA) or the freshness parameter and showed a significant increase in total free amino acid content. The antioxidant activity of ERJ was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and chemical assays. The ERJ showed about 80% DPPH-radical scavenging activity at same concentration of ascorbic acid. The antioxidant effect of ERJ was confirmed to be due to reduction of intracellular reactive oxidative species (ROS) and nitric oxide (NO) production in LPS-treated macrophages. Moreover, ERJ significantly increased the activity of the antioxidant enzyme superoxide dismutase (SOD) and the level of the antioxidant glutathione (GSH) in a dose-dependent manner. Interestingly, these antioxidant activities of ERJ were stronger than those of non-treated RJ. These findings indicate that ERJ has high potential as an antioxidant agent for use in human and animal diets.

Expression and Purification of Biologically Active Human Bone Morphogenetic Protein-4 in Recombinant Chinese Hamster Ovary Cells

  • Cha, Minyub;Han, Nara;Pi, Jia;Jeong, Yongsu;Baek, Kwanghee;Yoon, Jaeseung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1281-1287
    • /
    • 2017
  • Bone morphogenetic protein-4 (BMP-4) is considered to have therapeutic potential for various diseases, including cancers; however, the high expression of biologically active recombinant human BMP-4 (rhBMP-4) needed for its manufacture for therapeutic purposes has yet to be established. In the current study, we established a recombinant Chinese hamster ovary (rCHO) cell line overexpressing rhBMP-4 as well as a production process using 7.5-l bioreactor (5 L working volume). The expression of the mature rhBMP-4 was significantly enhanced by recombinant furin expression. The combination of a chemically defined medium and a nutrient supplement solution for high expression of rhBMP-4 was selected and used for bioreactor cultures. The 11-day fed-batch cultures of the established rhBMP-4-expressing rCHO cells in the 7.5-L bioreactor produced approximately 32 mg/l of rhBMP-4. The mature rhBMP-4 was purified to homogeneity from the culture supernatant using a two-step chromatographic procedure, resulting in a recovery rate of approximately 55% and a protein purity greater than 95%. The N-terminal amino acid sequences and N-linked glycosylation of the purified rhBMP-4 were confirmed by N-terminal sequencing and de-N-glycosylation analysis, respectively. The mature purified rhBMP-4 has been proved to be functionally active, with an effective dose concentration of $EC_{50}$ of 2.93 ng/ml.

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Tenebrio molitor Larvae (Mealworm) (갈색거저리 유충 단백가수분해물의 제조 및 항산화 활성)

  • Yu, Mi-Hee;Lee, Hyo-Seon;Cho, Hye-Rin;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • The present study was carried out to evaluate the applicability of Tenebrio molitor larvae (mealworm) as a health functional food material in order to contribute to the development of the domestic insect industry and health functional food industry. Protein hydrolysates were prepared from mealworm powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and the hydrolysates were then tested for their antioxidant activities. Based on available amino group contents and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses, mealworms treated with alcalase ($4,781.39{\mu}g/mL$), flavourzyme ($5,429.35{\mu}g/mL$), or neutrase ($3,155.55{\mu}g/mL$) for 24 h showed high degree of hydrolysis (HD) value, whereas HD values of bromelain ($1,800{\mu}g/mL$) and papain-treated ($1,782.61{\mu}g/mL$) mealworms were much lower. Protein hydrolysates showing high HD values were further separated into > 3 kDa and ${\leq}3kDa$ fractions by a centrifugal filter system and then lyophilized, and the production yields of the low molecular weight protein hydrolysates (${\leq}3kDa$) by alcalase, flavourzyme, and neutrase were 42.05%, 26.27%, and 30.01%, respectively. According to the RC_{50} values of the protein hydrolysates (${\leq}3kDa$) obtained from three different antioxidant analyses, all three hydrolysates showed similar antioxidant activities. Thus, alcalase hydrolysates showing the highest production yield of low molecular weight protein hydrolysates were further tested for their inhibitory effects on peroxidation of linoleic acid by measuring thiobarbituric acid values, and the results show that peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation. However, pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited linoleic acid peroxidation in a dose-dependent manner over 6 days.