• Title/Summary/Keyword: high dimensional data sets

Search Result 72, Processing Time 0.031 seconds

Introduction to variational Bayes for high-dimensional linear and logistic regression models (고차원 선형 및 로지스틱 회귀모형에 대한 변분 베이즈 방법 소개)

  • Jang, Insong;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • In this paper, we introduce existing Bayesian methods for high-dimensional sparse regression models and compare their performance in various simulation scenarios. Especially, we focus on the variational Bayes approach proposed by Ray and Szabó (2021), which enables scalable and accurate Bayesian inference. Based on simulated data sets from sparse high-dimensional linear regression models, we compare the variational Bayes approach with other Bayesian and frequentist methods. To check the practical performance of the variational Bayes in logistic regression models, a real data analysis is conducted using leukemia data set.

A Study on Data Classification of Raman OIM Hyperspectral Bone Data

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1010-1019
    • /
    • 2011
  • This was a preliminary research for the goal of understanding between internal structure of Osteogenesis Imperfecta Murine (OIM) bone and its fragility. 54 hyperspectral bone data sets were captured by using JASCO 2000 Raman spectrometer at UMKC-CRISP (University of Missouri-Kansas City Center for Research on Interfacial Structure and Properties). Each data set consists of 1,091 data points from 9 OIM bones. The original captured hyperspectral data sets were noisy and base-lined ones. We removed the noise and corrected the base-lined data for the final efficient classification. High dimensional Raman hyperspectral data on OIM bones was reduced by Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) and efficiently classified for the first time. We confirmed OIM bones could be classified such as strong, middle and weak one by using the coefficients of their PCA or LDA. Through experiment, we investigated the efficiency of classification on the reduced OIM bone data by the Bayesian classifier and K -Nearest Neighbor (K-NN) classifier. As the experimental result, the case of LDA reduction showed higher classification performance than that of PCA reduction in the two classifiers. K-NN classifier represented better classification rate, compared with Bayesian classifier. The classification performance of K-NN was about 92.6% in case of LDA.

Development and Evaluation of Stitching Algorithm With five Degrees of Freedom for Three-dimensional High-precision Texture of Large Surface (대면적/고정밀 3차원 표면형상의 5자유도 정합법 개발 및 평가)

  • Lee, Dong-Hyeok;Ahn, Jung-Hwa;Cho, Nham Gyoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • In this paper, a new method is proposed for the five-degree-of-freedom precision alignment and stitching of three-dimensional surface-profile data sets. The control parameters for correcting thealignment error are calculated from the surface profile data for overlapped areas among the adjacent measuring areas by using the "least squares method" and "maximum lag position of cross correlation function." To ensure the alignment and stitching reliability, the relationships betweenthe alignment uncertainty, overlapped area, and signal-to-noise level of the measured profile data are investigated. Based on the results of this uncertainty analysis, an appropriate size is proposed for the overlapped area according to the specimen's surface texture and noise level.

Classification of High Dimensionality Data through Feature Selection Using Markov Blanket

  • Lee, Junghye;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.210-219
    • /
    • 2015
  • A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.

Hybrid Lower-Dimensional Transformation for Similar Sequence Matching (유사 시퀀스 매칭을 위한 하이브리드 저차원 변환)

  • Moon, Yang-Sae;Kim, Jin-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.31-40
    • /
    • 2008
  • We generally use lower-dimensional transformations to convert high-dimensional sequences into low-dimensional points in similar sequence matching. These traditional transformations, however, show different characteristics in indexing performance by the type of time-series data. It means that the selection of lower-dimensional transformations makes a significant influence on the indexing performance in similar sequence matching. To solve this problem, in this paper we propose a hybrid approach that integrates multiple transformations and uses them in a single multidimensional index. We first propose a new notion of hybrid lower-dimensional transformation that exploits different lower-dimensional transformations for a sequence. We next define the hybrid distance to compute the distance between the transformed sequences. We then formally prove that the hybrid approach performs the similar sequence matching correctly. We also present the index building and the similar sequence matching algorithms that use the hybrid approach. Experimental results for various time-series data sets show that our hybrid approach outperforms the single transformation-based approach. These results indicate that the hybrid approach can be widely used for various time-series data with different characteristics.

Density-based Outlier Detection in Multi-dimensional Datasets

  • Wang, Xite;Cao, Zhixin;Zhan, Rongjuan;Bai, Mei;Ma, Qian;Li, Guanyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3815-3835
    • /
    • 2022
  • Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.

A Comparative Study on Isomap-based Damage Localization (아이소맵을 이용한 결함 탐지 비교 연구)

  • Koh, Bong-Hwan;Jeong, Min-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

Characteristics on Inconsistency Pattern Modeling as Hybrid Data Mining Techniques (혼합 데이터 마이닝 기법인 불일치 패턴 모델의 특성 연구)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.225-242
    • /
    • 2008
  • PM (Inconsistency Pattern Modeling) is a hybrid supervised learning technique using the inconsistence pattern of input variables in mining data sets. The IPM tries to improve prediction accuracy by combining more than two different supervised learning methods. The previous related studies have shown that the IPM was superior to the single usage of an existing supervised learning methods such as neural networks, decision tree induction, logistic regression and so on, and it was also superior to the existing combined model methods such as Bagging, Boosting, and Stacking. The objectives of this paper is explore the characteristics of the IPM. To understand characteristics of the IPM, three experiments were performed. In these experiments, there are high performance improvements when the prediction inconsistency ratio between two different supervised learning techniques is high and the distance among supervised learning methods on MDS (Multi-Dimensional Scaling) map is long.

  • PDF

Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation (영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘)

  • Choi Byung-In;Rhee Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.828-833
    • /
    • 2005
  • Kernel methods have shown to improve the performance of conventional linear classification algorithms for complex distributed data sets, as mapping the data in input space into a higher dimensional feature space(7). In this paper, we propose a fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) algorithm, which applies the distance measure in feature space based on kernel functions to the fuzzy K-nearest neighbor(fuzzy K-NN) algorithm. In doing so, the proposed algorithm can enhance the Performance of the conventional algorithm, by choosing an appropriate kernel function. Results on several data sets and segmentation results for real images are given to show the validity of our proposed algorithm.

Feature Weighting in Projected Clustering for High Dimensional Data (고차원 데이타에 대한 투영 클러스터링에서 특성 가중치 부여)

  • Park, Jong-Soo
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.228-242
    • /
    • 2005
  • The projected clustering seeks to find clusters in different subspaces within a high dimensional dataset. We propose an algorithm to discover near optimal projected clusters without user specified parameters such as the number of output clusters and the average cardinality of subspaces of projected clusters. The objective function of the algorithm computes projected energy, quality, and the number of outliers in each process of clustering. In order to minimize the projected energy and to maximize the quality in clustering, we start to find best subspace of each cluster on the density of input points by comparing standard deviations of the full dimension. The weighting factor for each dimension of the subspace is used to get id of probable error in measuring projected distances. Our extensive experiments show that our algorithm discovers projected clusters accurately and it is scalable to large volume of data sets.