• 제목/요약/키워드: high current density

검색결과 2,265건 처리시간 0.035초

하이브리드 자동차용 HDC를 위한 50kW급 고전력밀도 양방향 컨버터 (High Power Density 50kW Bi-directional Converter for Hybrid Electric Vehicle HDC)

  • 양정우;금문환;최윤;한상규;김석준;김삼균;김종필;사공석진
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.95-101
    • /
    • 2016
  • This paper proposed a high-power density bidirectional converter for hybrid electric vehicle high-voltage DC-DC converter(HDC). The conventional HDC has two disadvantages. First, large inductance is required to satisfy the ripple current of inductor by low switching frequency (<20 kHz). Second, large core size is required to prevent the saturation of inductor by high current. Compared with the conventional HDC, the proposed HDC can reduce inductance with SiC-FET for high frequency driving. High-power density of I/O capacitors can be achieved through two-phase interleaved method. The high-power density of inductors can be achieved because the offset current of magnetizing inductance is theoretically terminated by using the differential mode coupled inductor instead of using two single inductors. The validity of the proposed converter is proved through the 50 kW prototype.

전기 에너지 저장을 위한 초전도 나노 합성 기술 (Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Bi-2223 고온초전도 전류리드의 제조 (Fabrication of Bi-2223 high-Tc superconducting current lead)

  • 하동우;오상수;류강식;장현만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1660-1662
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. $(Bi,Pb)_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$ high Tc superconductor hase been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at $836\;^{\circ}C$ for 240 h in 1/13 $PO_2$ had over $500\;A/cm^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF

전력기기 초전도 합성기술 (Fabrication Technology of high Tc Superconductor for Electrical Equipment)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권7호
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화 (Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

전기자동차 구동용 모터를 위한 전류 제어 기술 (An Overview: Current Control Technique for Propulsion Motor for EV)

  • 이희광;남광희
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.

금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향 (Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics)

  • 이욱철;정명상;이준성;송희은;강민구;박성은;장효식;이상희
    • Current Photovoltaic Research
    • /
    • 제9권1호
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

2G HTS wire with enhanced engineering current density attained through the deposition of HTS layer with increased thickness

  • Markelov, A.;Valikov, A.;Chepikov, V.;Petrzhik, A.;Massalimov, B.;Degtyarenko, P.;Uzkih, R.;Soldatenko, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.29-33
    • /
    • 2019
  • 2G HTS wire with high engineering current density is desired for applications where compact, high power density superconducting equipment is important. We have succeeded in enhancing engineering current density of commercial SuperOx 2G HTS wire based on GdBCO by increasing the HTS layer thickness without fast degradation of the HTS film microstructure. This was possible after improving the temperature uniformity along the HTS film deposition zone. In particular, the wire engineering current density was increased from 700-770 A/㎟ (for a 65 ㎛-thick wire without stabilisation) or 430-480 A/㎟ (for a 105 ㎛-thick stabilised wire) at the beginning of this study to almost 1200 A/㎟ (for a 67 ㎛-thick wire without stabilisation) or 770 A/㎟ (for a 107 ㎛-thick stabilised wire) at completion of this study.

Implement High Speed Bidirectional pulse power supply(BPPS) for plating

  • Kim, Tae-Eon;Park, Jong-Oh;Cho, Yong-Seong;Lee, Ihn-Yong;Kim, Young-Han;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.37.1-37
    • /
    • 2001
  • Electric plating is used in various industry field. Specially, pulse plating is able to deposit material at high current density compared to conventional DC plating. For example, pulse plating can get more fine grain, can improve adhesion and metal distribution and current efficiency, can reduce internal stress and crack. Therefore, we developed bidirection pulse power supply(BPPS) which has high speed pulse current and high current density and improve deposition quality and increase plating speed in this paper. BPPS(Bidirection pulse power supply) needs high speed rising time, falling time and output current accuracy. BPPS consists of rectifier part, chopper part, invertor part, and control part. Rectifier part changes outprt current direction.

  • PDF

HSS을 적용한 STI CMP 공정에서 EPD 특성 (A study of EPD for Shallow Trench Isolation CMP by HSS Application)

  • 김상용;김용식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.35-38
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.l8um semiconductor device. Through reverse moat pattern process, reduced moat density at high moat density, STI CMP process with low selectivity could be to fit polish uniformity between low moat density and high moat density. Because this reason, in-situ motor current end point detection method is not fit to the current EPD technology with the reverse moat pattern. But we use HSS without reverse moat pattern on STI CMP and take end point current sensing signal.[1] To analyze sensing signal and test extracted signal, we can to adjust wafer difference within $110{\AA}$.

  • PDF