• Title/Summary/Keyword: high curing temperature

Search Result 504, Processing Time 0.028 seconds

Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture (전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

Effect of Curing Temperature and Aging on the mechanical Properties of Concrete (I) -Experimental Results and Analysis- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(I) -실험결과 및 분석을 중심으로-)

  • 한상훈;김진근;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.23-34
    • /
    • 2000
  • This paper reports the effects of curing temperature and aging on the strength and the modulus of elasticity. In oder to determine the strength and the modulus of elasticity with curing temperature and aging, experimental and analytical methods are adopted. The tests of 480 cylinders are carried out for type I, V and V with 15 percent replacement of fly ash cement concretes, which are cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$. and the concrete cylinders are tested at the ages of 1, 3, 7 and 28 days. According to the experimental results, the concrete subjected to high temperature at early ages attaines higher early-age compressive and splitting tensile strength but eventually attaines lower later-age compressive and splitting tensile strength. Even if modulus of elasticity has the same tendency, the variation of modulus of elasticity with curing temperature is smaller than that of compressive strength. Based on these experimental results, the relationships among compressive strength, modulus of elasticity and splitting tensile strength are proposed considering the effects of curing temperature, aging and cement type.

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

A Study on the Properties of Cement Mortar with the Content of Expansive Additives Under Various Curing Method (팽창재량 및 양생방법에 따른 시멘트 모르터의 특성에 관한 연구)

  • 한성수;김정진;김효구;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.181-186
    • /
    • 1999
  • When the expansive additives are used in concrete to reduce the shrinkage cracking, it shows variable properties with the curing method and curing temperature. Therefore, in this study, the experiments are perfomed to present the expansion of cement mortar by varying the unit additions of expansive additives and the curing method. According to the test results, the order of expansion by curing method, which is caused by hydration heat of cement, is follows ; curing at water > curing at air after curing at water for 7 days > curing at air. Cement mortar using expansive additives shows that high expansion is place with rise of temperature.

  • PDF

The Experimental Study on Early Strength Properties of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 초기강도성상에 관한 실험적 연구)

  • 이동하;김상미;강태경;백민수;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.281-286
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment of curing temperature $35^{\circ}C$, . Flesh concrete tested slump. air contest and Hardening concrete valuated setting period of form, day of age 1, 3, 5. 7, 10, 28 compression strength in sealing curing. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Experiment result age 28day compression strength more higher plan concrete then standard environment in curing temperature $20^{\circ}C$, , most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$, replacement binder 25%, fine aggregate 15%. (2) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

  • PDF

Mechanical Charateristics of Remolded Clay and Simulation of Aging Effect with Curing Condition (양생조건에 따른 연대효과의 재현과 재압밀점토의 역학특성)

  • Kim, Chan-Kee;Kook, Hyoun-Sook;Park, Man-Gyu;Hong, Zee-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.353-356
    • /
    • 2002
  • In this study, the clay samples collected in the area Mokpo carry out laboratory soil test. Under three different curing $temperature-20^{\circ}C,\;50^{\circ}C,\;80^{\circ}C$ and 4 terms of curing day -1day, 7days, 14days, 40days for each, the remolded and reconsolidated samples had been made. To find out an aging effects and geotechnical characteristics between undisturbed samples and reconsolidated samples, laboratory tests were preformed. In the results, it was found that mechanical properties of undisturbed natural samples were similar to high temperature reconsolidation clay. The curing temperature influence on simulating aging effect more than the curing day does and the best curing condition are $80^{\circ}C$, 27days.

  • PDF

Fundamental Research on Compressive Strength Recovery of Excessive High-volume Fly Ash Mortar (Fly Ash가 다량치환된 모르타르의 압축강도 회복에 관한 기초적 연구)

  • Choi, Yoon-Ho;Sin, Se-Jun;Han, Jun-Hui;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.199-200
    • /
    • 2019
  • The purpose of the research is assessing the possibility of strength recovery for mortar added with accidently high amount of fly ash. For compressive strength at 28 day, the sample painted with sodium hydroxide showed higher compressive strength than the sample painted with calcium hydroxide. Regarding the curing conditions, the curing temperature 65℃ provided better conditions than the curing temperature 20℃ in aspect of solution penetration depth and reactivity of fly ash. In the case of drying after saturation, the case painted with sodium hydroxid 65℃ showed the clearest engrossing mark.

  • PDF

Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.481-492
    • /
    • 2017
  • The aim of this paper is to investigate the effect of quartz powder (Qp), quartz sand (Qs), and different water curing temperature on mechanical properties including 7, 14, 28-day compressive strength and 28-day splitting tensile strength of Ultra High Performance Concrete and also finding the correlation between these variables on mechanical properties of UHPC. The response surface methodology was monitored to show the influences of variables and their interactions on mechanical properties of UHPC, then, mathematical models in terms of coded variables were established by ANOVA. The offered models are valid for the variables between: quartz powder 0 to 20% of cement substitution by cement weight, quartz sand 0 to 50% of aggregate substitution by crushed limestone weight, and water curing temperature 25 to $95^{\circ}C$.

Adhesive Strength Characteristics of the Curing Time and Test Temperature for Liquid Waterproofing Membrane in Concrete Bridge Deck (콘크리트 교면 도막 방수재의 양생기간 및 시험체 온도에 따른 접착 특성)

  • 조병영;박동협;신주재;김영근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.553-556
    • /
    • 2003
  • This study is analyzed about the factor of adhesive strength characteristics, curing time, asphalt application, test temperature which are liquid waterproofing membrane of rubber-asphalt and chloroprene-rubber type for concrete bridge deck. According to the results, curing time is shorter, adhesive strength is less in chloroprene-rubber type. And also chloroprene-rubber and rubber-asphalt type are showed high adhesive strength in low temperature.

  • PDF

Construction Example on the Interior and Exterior of Building utilizing UHPC for Premix Type Room Temperature Curing (프리믹스형 상온양생용 UHPC를 활용한 건축물 내·외장 시공 사례)

  • Choi, Byung-Keol;Yoon, Ju-Yong;Ko, Hyo-Jin;Park, Yong-Kyu;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.143-144
    • /
    • 2019
  • This study introduces the production and construction of building interior and exterior materials using UHPC for premix type room temperature curing developed through advance research and development.

  • PDF