• 제목/요약/키워드: high corrosion resistance

검색결과 1,077건 처리시간 0.027초

Duplex Surface Modification with Micro-arc Discharge Oxidation and Magnetron Sputtering for Aluminum Alloys

  • Tong, Honghui;Jin, Fanya;He, Heng
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.21-27
    • /
    • 2003
  • Micro-arc discharge oxidation (MDO) is a cost-effective plasma electrolytic process which can be used to improve the wear and corrosion resistance of Al-alloy parts by forming a alumina coating on the component surface. However, the MDO coated Al-alloy components often exhibit relatively high friction coefficients and low wear resistance fitted with many counterface materials, additionally, the pitting corrosion for the MDO coated AI-alloy components, especially for a thinner alumina coating, often occurs in atmosphere circumstance due to the porous alumina coats. Therefore, a duplex treatment, combining a MDO coated ahumina thin layer with a TiN coating, prepared by magnetron sputtering (MS), has been investigated. The Vicker's microhardness, pin-on-disc, electrochemical measurement, salt spray, XRD and SEM tests were used to characterize and analyze the treated samples. The work demonstrates that the MDO/MS coated samples have a combination of a very low friction coefficient and good wear resistance as well as corrosion since the micro-holes on alumina coating are partly or fully covered by TiN material.

치과 및 의료용 스테인리스강선의 표면특성 (Surface Characteristics of Stainless Steel Wire for Dental and Medical Use)

  • 최한철;고영무
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.339-346
    • /
    • 2003
  • Stainless steel wire has been used in industry, dental and medical parts. Especially, it has been used widely for the dental orthodontic materials. The orthodontic wire requires good mechanical properties, such as elastic strength, combined with a high resistance to corrosion. To increase elastic strength and good corrosion resistance, drawing methods(one-step and two-step drawing) have been used and the electrochemical characteristics of drawed wire have been researched using potentiodynamic method in 0.9%NaCl and field emission scanning electron microscope. The one-step drawed wire showed the formation of rough surface. The hardness and tensile strength of two-step drawed wire increased. For the case of two-step drawed wire, the corrosion resistance and pitting potential increased compared with one-step drawed wire due to the drawing induced small surface roughness, such as scratch. The passivation and active current density decreased as the reduction in area for drawing increased.

하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량 (Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete)

  • 이현진;배수호;정상화
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.375-381
    • /
    • 2017
  • 최근, 친환경 콘크리트에 대한 관심의 증가로, 플라이애시, 고로슬래그 미분말 및 실리카 퓸 등의 산업부산물을 혼입한 콘크리트의 사용이 증가되고 있다. 특히 이 같은 산업부산물은 콘크리트 내의 철근부식 저항성을 증가시키고 염화물이온 침투를 감소시키는 것으로 잘 알려져 있다. 이 실험연구의 목적은 시멘트량의 약 50%를 플라이애시로 치환한 하이볼륨 플라이애시 콘크리트(HVFAC)의 철근부식 저항성 및 임계 염화물량을 평가하는 것이다. 이를 위하여 철근 상부를 노출시킨 원주형 공시체의 철근부식 개시 시기를 추정하기 위하여 자연전위 측정에 의한 철근부식 모니터링을 수행하였다. 결론적으로, HVFAC의 철근부식 개시 시기는 플레인 콘크리트보다 1.2~1.3배 증가하여 철근부식 저항성이 우수한 것으로 나타났고, 플레인 콘크리트 및 HVFAC의 임계 염화물량은 각각 $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$으로 나타나, HVFAC가 플레인 콘크리트보다 1.1~1.3배 증가하는 것으로 나타났다.

정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구 (A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

Effects of Zn2+ concentration and pH on the formation and growth of zinc phosphate conversion coatings on AZ31 magnesium alloy

  • Van Phuong, Nguyen;Lee, Kyuhwan;Lee, Sangyeol;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.62-62
    • /
    • 2013
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion of Mg alloys. In this study, the effects of various $Zn^{2+}$ concentrations and pH levels on the formation of zinc phosphate conversion coatings (ZPCCs) on AZ31 magnesium alloy were investigated, and corrosion resistances of the coated samples were evaluated by immersion test and potentiodynamic polarization experiment. The corrosion resistance of the coated AZ31 samples was found to increase with increasing $Zn^{2+}$ concentration and the lowest corrosion rate was obtained for the samples coated at pH of 3.07, independent of $Zn^{2+}$ concentration. The best coatings on AZ31 were obtained at [$Zn^{2+}$] = 0.068 M and pH 3.07. At the conditions of [$Zn^{2+}$] = 0.068 M and pH 3.07, the formation and growth processes of ZPCCs on AZ31 Mg alloy are divided into four stages: formation of a dense layer, precipitation of fine crystals on the dense layer, growths of the inner and outer layers, and reorganization of outer crystalline layer.

  • PDF

아연 코팅과 열처리에 따른 알루미늄 열교환기 소재의 부식 (Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes)

  • 조수연;김재중;장희진
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.24-32
    • /
    • 2019
  • The effects of zinc coating and heat treatment on the corrosion resistance of aluminum alloys including A1100 and the modified A3003, used as heat exchanger tube were investigated in this study. The grain size of the heat-treated specimen is larger than that of the specimen without heat treatment, but the grain size did not significantly affect the corrosion behavior. The concentration of zinc was noted at 11.3 ~ 31.4 at.% for the as-received Zn-coated samples and reduced to 1.2 ~ 2.4 at.% after the heat treatment, as measured by the scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) on the surface. The concentration of oxygen is 22 ~ 46 at.% for the zinc coated specimens while noted at 7.4 ~ 12.8 at.% for the specimens after the removal of the coating. The corrosion behavior depended largely on the concentrations of zinc, aluminum, and oxygen on the specimen surface, but not on the Mo content. The corrosion potential was high and the corrosion rate was low for a specimen with a low zinc content, a high aluminum content, and a high oxygen content.

주석 도금한 커넥터의 접촉 하중의 변화에 의한 전기 접촉저항 변화에 관한 연구 (A Study on the Variation of Electric Contact Resistance Due to Change in Contact Force in a Tin-plated Connector)

  • 유환신;오만진;박형배
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.381-386
    • /
    • 2014
  • 전기 커넥터에 영향을 주는 프레팅 부식 요인 중 하나인 접촉 부하의 영향을 조사하기 위하여, 프레팅 부식 표본 쌍을 두께 $3{\mu}m$의 두께를 갖는 주석으로 도금된 황동 표본을 사용하여 제조하였다. 접점의 전기저항은 프레팅 부식 시험 기간 동안 측정되었다. 프레팅 주기에서 저항은 증가하였다. 저항의 변화는 3단계로 나눌 수 있다. 첫 번째 단계는 미미하고 안정적인 저항을 나타내었다. 두 번째 단계는 저항이 꾸준한 증가를 보여 주었다. 그리고 세 번째 단계는 매우 높고 간헐적인 저항을 보여주었다. 실패주기(Nf)와 접촉력(P) 사이의 관계는 다음과 같이 표현될 수 있다. 각각의 하중, 변위, 온도 등 다양한 조건에서 프레팅 테스트를 통해 다양한 환경 조건 하에서 매우 높고 간헐적인 저항에 대응 전기 커넥터의 실패주기 예측공식의 표현이 가능할 것이다.

아연 전기 도금 강의 환경친화적인 화성처리 기술 개발 (Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel)

  • 김성종;김정일;장석기
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

5052-O 알루미늄 합금의 워터 캐비테이션 피닝 시간에 따른 표면 경화와 부식 특성에 관한 연구 (Investigation on surface hardening and corrosion characteristic by water cavitation peening with time for Al 5052-O alloy)

  • 김성종;현광룡
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.151-156
    • /
    • 2012
  • The cavity formed by the ultrasonic generation in the fluid with the application of water cavitation peening collides into the metal surface. At this time, the surface modification effect such as the work hardening presents by the compressive residual stress formed due to the localized plastic deformation. In this investigation, the water cavitation peening technology in the distilled water with the lapse of time was applied to 5052-O aluminum alloy for aluminum ship of a high value. So, the optimum water cavitation peening time on the effect for surface hardening and anti-corrosion property was investigated. Consequently, the water cavitatin peening time on excellent hardness and corrosion resistance characteristic presented 3.5 min. and 5.0 min, respectively. The surface hardness in the optimum water cavitation peening time was improved approximately 45% compared to the non-WCPed condition. In addition, corrosion current density was decreased.

고성능AE감수제를 사용한 콘크리트의 철근부식 저항성 (Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent)

  • 이문환;정미경;오세출;배규웅;서치호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF