• Title/Summary/Keyword: high concentration distribution

Search Result 1,225, Processing Time 0.037 seconds

The Research for Relationships between Concentration of Indoor Radon and Distribution of Soil Geological Map using GIS : Based on the Hwacheon and Jangsu Areas (지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로)

  • Kwon, Myunghee;Lee, Jaewon;Kim, Seongmi;Lee, Jungsub;Jung, Joonsig;Yoo, Juhee;Lee, Kyusun;Song, Suckhwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.333-351
    • /
    • 2017
  • Objectives: This study examines the relationships between indoor radon concentrations and distribution from soil geological mapping in the Hwacheon and Jangsu areas. Methods: GIS and a pivot table were used for inquiries about indoor radon contents, soil characteristics, and geological differences. Results: The Hwacheon area was characterized by the presence of normal and reverse faults as a passage of runoff for radon, sufficient occurrences of minerals containing uranium within granite as a radon source, a high concentration of radon within the granite area and clear differences of radon concentrations between granitic and metamorphic areas. The Jangsu area was characterized by the presence of normal faults, wide distributions of alluvium, and ambiguities on radon concentrations indoors among areas of geological differences. Considering the granite area and alluvium surrounded with granite areas, the characteristics of radon concentrations within soils and indoors in the Jangsu area are similar to those of the Hwacheon area. High concentrations are found with entisol and inceptisol in the Hawcheon area, but with entisol, inceptisol, and ultisol in the Jangsu area. High radon concentrations are found in sandy loam and/or loam. High concentrations are found in recently constructed or brick buildings, but low concentrations in traditional or prefabricated houses showing a high possibility of outward flow. Conclusions: The overall results suggest that radon concentrations in the Hwacheon and Jangsu area are dominantly influenced by geological characteristics with additional artificial influences.

Study on the Characteristics of Spatial Relationship between Heat Concentration and Heat-deepening Factors Using MODIS Based Heat Distribution Map (MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구)

  • Kim, Boeun;Lee, Mihee;Lee, Dalgeun;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1153-1166
    • /
    • 2020
  • The purpose of this study was to analyze the spatial correlation between the heat distribution map of the satellite imaging base and the factors that deepen the heat wave, and to explore the heat concentration area and the space where the risk of future heat wave may increase. The global Moran's I of population, land use, and buildings, which are the causes of heat concentration and heat wave deepening, is found to be high and concentrated in specific spaces. According to the analysis results of local Moran's I, heat concentration areas appeared mainly in large cities such as metropolitan and metropolitan areas, and forests were dominant in areas with relatively low temperatures. Areas with high population growth rates were distributed in the surrounding areas of Gyeonggi-do, Daejeon, and Busan, and the use of land and buildings were concentrated in the metropolitan area and large cities. Analysis by Bivarate Local Moran's I has shown that population growth is high in heat-intensive areas, and that artificial and urban building environments and land use take place. The results of this research can lead to the ranking of heat concentration areas and explore areas with environments where heat concentration is concentrated nationwide and deepens it, so ultimately it is considered to contribute to the establishment of preemptive measures to deal with extreme heat.

Spatial distribution of Acartia(Copepoda, Calanoida) species in the southern coastal waters of Korea during summer (하계 남해연안에 출현하는 Acartia속 요각류의 공간 분포)

  • Choi, Seo Yeol;Seo, Min Ho;Shin, Kyoungsoon;Jang, Min-Chul;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.299-308
    • /
    • 2019
  • The occurrence patterns of Acartia(Copepoda; Calanoida) species, A. erythraea, A. hongi, A. hudsonica, A. ohtsukai, and A. sinjiensis, were examined in the southern coastal waters of Korea in the summer in August 2012. The Acartia species had different spatial distribution according to environmental factors. A. erythraea showed higher density in a semi-closed bay (Gamak, Masan) where the dissolved oxygen was low (<2 mg L-1). A. sinjiensis showed a high density in a semi-closed bay when the chlorophyll-a concentration was >2 ㎍ L-1. A. ohtsukai showed a high density at water temperatures >26℃ and low salinity <30. A. hongi and A. hudsonica showed at water temperatures <27℃ and high dissolved oxygen (>5 mg L-1). These results suggest that environmental factors (temperature, salinity, dissolved oxygen, and chlorophyll-a concentration) may affect the spatial distribution of Acartia species dominant in the southern coasts of Korea in summer.

Regional Characteristics of Particle Size Distribution of PM10 (미세먼지 입경농도 분포의 지역별 특성)

  • Lee, Yong-Ki;Lee, Ki-Jong;Lee, Jae-Seong;Shin, Eun-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.666-674
    • /
    • 2012
  • The purpose of this study is to propose management strategies to lower the level of $PM_{10}$ concentration. First, this study analyzes the characteristics of particle sizes in three different areas, the residential, the roadside, and the industrial areas. Second, it has examined the size of particles which can influence on the increase of $PM_{10}$ concentration level. The distribution of particle size for $PM_{10}$ concentration was not different by regions. The highest portion in the observed $PM_{10}$ is near $0.3{\mu}m$. In addition, both near $2.5{\mu}m$ and near $5.0{\mu}m$ are found higher in portion. The fractions of $PM_{1.0}$ and $PM_{2.5}$ in $PM_{10}$ are 68.2% and 75.8% respectively. The fraction of $PM_{1.0}$ in $PM_{2.5}$ is 89.8%. The particle diameters contributed to the increase of $PM_{10}$ concentration are different by regions. In the residential area, the sizes of near $0.6{\mu}m$ and near $3.3{\mu}m$ particles are found to be the cause for the increase of $PM_{10}$ concentration level. However the particle sizes for the increase of $PM_{10}$ concentration level are $0.8{\mu}m$ and $0.5{\mu}m$ in roadside and industrial area respectively. Therefore, fine particles are found as the key factors to raise $PM_{10}$ concentration level in the two areas, while both fine and coarse particles are in the residential areas. When examined the $PM_{10}$ concentration level change, it was categorized by two different time zones, the high concentration level time and the lower concentration time. In high concentration time, the $PM_{10}$ concentration has increased in the morning in the residential and roadside areas. On the contrary, the level has increased in the evening in the industrial area. In low concentration time, the level of $PM_{10}$ concentration in the roadside area is significantly higher in the morning than the concentration level of other times. There is no significantly different concentration level found in the both residential and industrial areas throughout the day.

Influence of Sewage Sludge Application on Soil Nitrate Distribution in a Clay Soil

  • Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.70-73
    • /
    • 2003
  • Nitrate contamination in the aquatic systems is the primary indicator of poor agricultural management. The influence of sewage sludge application rates (0, 10, 25, 50 and 100 dry Mg/ha) on distribution of nitrate originating from the sewage sludge in soil profiles was investigated. Soil profile monitoring of nitrate was carried out with a Lakeland clay soil in 1997. Irrespectively of the sewage sludge application rates up to 50 dry Mg/ha, the concentration of $NO_3$-N at the 120 cm depth was below 10 mg/kg and the difference due to the amount of sewage sludge application was negligible at this depth. There was virtually no $NO_3$-N below 120 cm depth and this was confirmed by a deep sampling up to 300 cm depth. Most of the nitrate remained in the surface 60 cm of the soil. Below 120 cm depth nitrate concentration was very low because of the denitrification even at high sewage sludge rate of 100 dry Mg/ha. The $NO_3$-N concentrations in the soil fluctuated over the growing season due to plant uptake and denitrification. The risk of groundwater contamination by nitrate from sewage sludge application up to high rate of 100 dry Mg/ha was very low in a wheat grown clay soil with high water table ( < 3 m).

Air concentration and particle size distribution of wood dust during wood-working processes (나무 종류에 따른 공기중 분진 농도와 입경 분포에 관한 연구)

  • Kim, Seung Ki;Roh, Jaehoon;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.145-157
    • /
    • 1999
  • Wood dust is created when machines are used to cut or shape wood materials. Industries of high risk of wood dust exposure are sawmills, dimension mills, furniture industries, and carpenters, etc. Health effects associated with wood dust exposure includes dermatitis, allergic respiratory effects and cancer. Health effects of wood dus t are mainly depend on the concentration, dust size and exposure time. This study were carried out to evaluate the concentration and particle size distribution of wood dust during working processes. The subjects of this study were 53 workers exposed to wood dust in 7 furniture factories and 5 musical instruments, and 5 sawmill factories. The average total wood dust concentrations measured by personal cascade impactor were $1.82{\pm}2.31mg/m^3$ in primary manufacture, $3.59{\pm}1.72mg/m^3$ in s econdary manufacture, $5.09{\pm}1.46mg/m^3$ in sanding operation. Mass median diameters of hardwoods dust were $3.36{\mu}m$ in primary manufacture, $4.25{\mu}m$ in secondary manufacture, $4.21{\mu}m$ in sanding operation. softwoods dust were $3.39{\mu}m$ in primary manufacture, $4.34{\mu}m$ in secondary manufacture. Particle size distributions showed a nearly the same pattern in each working processes. The sample concentration of all hardwood dust exceeded the Threshold Limit Value(TLV) and 20.8% of the softwood dust exceeded the Threshold Limit Value. The range of size distribution were $0.5-10{\mu}m$ in the soft and hardwood dust. The respirable dust of soft and hardwood took up 59% and above. Therefore new threshold limit value for wood dust should be needed in Korea. Also, it should be done for various studies on health effects related to occupational exposure of wood dust.

  • PDF

Characteristic of PM10 Distribution Related to Precise Local Wind Patterns in Busan Metropolitan Area (상세 국지 기류 분포를 고려한 부산 지역 내 미세 먼지 분포 특성)

  • Hong, Seon-Hwa;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1375-1387
    • /
    • 2017
  • In order to investigate the $PM_{10}$ concentration trend and its characteristics over five different sub area in Busan from 2013 to 2015, data analysis with considering air flow distribution according to its topography was carried out using statistical methodology. The annual mean concentrations of $PM_{10}$ in Busan tend to decrease from $49.6{\mu}g/m^3$ in 2013 to $46.9{\mu}g/m^3$ in 2015. The monthly mean concentrations value of $PM_{10}$ were high during spring season, from March to May, and low during summer and fall due to frequent rain events. The concentration of $PM_{10}$ was the highest in five different sub-area in Busan. High concentration episodes over 90 percentile of daily $PM_{10}$ concentration were strongly associated with mean daily wind speed, and often occurred when the westerly wind or southwesterly wind were dominant. Regardless of wind direction, the highest correlation of $PM_{10}$ concentrations was observed between eastern and southern regions, which were geographically close to each other, and the lowest in the western and eastern regions blocked by mountains. Wind flow along the complex terrain in Busan is also one of the predominant factors to understand the temporal variation of $PM_{10}$ concentrations.

Real-time Monitoring of Colloidal Nanoparticles using Light Sheet Dark-field Microscopy Combined with Microfluidic Concentration Gradient Generator (μFCGG-LSDFM)

  • Choe, Hyeokmin;Nho, Hyun Woo;Park, Jonghoon;Kim, Jin Bae;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.365-370
    • /
    • 2014
  • For real-time monitoring of colloidal nanoparticles (NPs) in aqueous media, a light sheet type dark-field microscopy system combined with a microfluidic concentration gradient generator (${\mu}FCGG$-LSDFM) was developed. Various concentrations of colloidal Au NPs were simultaneously generated with the iFCGG and characterized with the LSDFM setup. The number concentrations and hydrodynamic size distributions were measured via particle counting and tracking analysis (PCA and PTA, respectively) approaches. For the 30 nm Au NPs used in this study, the lower detection limit of the LSDFM setup was 3.6 ng/mL, which is about 400 times better than that of optical density measurements under the same ${\mu}FCGG$ system. Additionally, the hydrodynamic diameter distribution of Au NPs was estimated as $39.7{\pm}12.2nm$ with the PTA approach, which agrees well with DLS measurement as well as the manufacturer's specification. We propose this ${\mu}FCGG$-LSDFM setup with features of automatic generation of NP concentration gradient and real-time monitoring of their physicochemical characteristics (e.g., number concentration, and hydrodynamic size distribution) as an important component of future high-throughput screening or high-content analysis platforms of nanotoxicity.

Distribution of Dissolved and Particulate Organic Carbon in the East China Sea in Summer (하계 동중국해에서의 용존 및 입자유기탄소의 분포 특성)

  • Kim, Soo-Kang;Choi, Young-Chan;Kim, Jin-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 2008
  • This study was conducted around the southwest sea areas of Jeju and coastal sea areas of China in August 2003 and September 2004 to research distribution patterns of dissolved inorganic nutrients, dissolved and particulate organic carbon. Distribution patterns of nutrients in the East China Sea in summer were shown to be influenced by water masses and phytoplankton. Water masses in the East China Sea in summer, except for coastal sea areas of china, showed less vertical mixing process, causing decline in the inflow of nutrients to surface water. Bottom water, however, showed high concentration, since nutrients made by dissolved organic matters from surface water were accumulated at the bottom. Sea areas with high concentration of chlorophyll a showed low concentration of nutrients and vice versa, indicating biological activities control dissolved inorganic nutrients. The distribution of dissolved organic carbon didn't show any correlation with salinity, temperatures, and water masses. Areas around the river mouth of the Changjiang showed high concentration of dissolved organic carbon more than $100{\mu}M$, but relatively low concentration in the southwest sea areas of Jeju, indicating that the river mouth of the Changjiang coastal water has a great influence on dissolved organic carbon in the East China Sea. Distribution patterns of particulate organic carbon in the research areas showed the highest concentration of average $9.23{\mu}M$ in coastal areas of China influenced by the river mouth of the Changjiang coastal water. By comparison, the concentration was relatively low at $3.04{\mu}M$ in the southeast sea areas of Jeju on which the Taiwan warm current has influence, and was $7.23{\mu}M$ in the central sea areas of Jeju. Thus, there is much indication that the river mouth of the Changjiang coastal water serves as a supplier of particulate organic carbon along with autogenous source. In general, if particulate organic carbon has a high correlation with the concentration of Chlorophyll a, it is thought that it is originated from autogenous source. However, the southeast sea areas of Jeju shows low salinity below 30, therefore it is proper to think that its origin is terrestrial source rather than that of autogenesis.

  • PDF

Origin and Spatial Distribution of Organic Matter at Gwangyang Bay in the Fall (추계 광양만의 유기물 기원과 분포 특성)

  • Lee, Young-Sik;Kang, Chang-Keun;Choi, Yong-Kyu;Lee, Sang-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Environment factors related to the distribution of organic matter in surface seawater and sediments were investigated to estimate main pollution sources and range of their influence in Gwangyang Bay. The main pollution sources for the factors that affect organic matter distribution could be divided into three main sources: fresh water runoffs from Seomjin and Dong River, Gwangyang-si domestic sewage, and Yosu Industrial Complex. Considering the characteristics in horizontal distributions of the environmental factors in water column, sediment, and water current regime, the influencing range of these main sources was likely to be divided into three areas within the bay as follows: Area I receiving lots of fresh water from Seomjin River, Area II receiving lots of domestic sewage from Gwangyang-si and fresh water of Dong River, Area III receiving lots of materials from Yosu Industrial Complex. Area I seems to be characterized as low salinity, high concentration of $NO_3-N,\;and\;SiO_2-Si$, Area II as low salinity, high concentration of $NO_3-N,\;NH_4-N,\;and\;SiO_2-Si$, and Area III as high water temperature, high concentration of $NH_4-N,\;and\;PO_4-P$ in water column, high concentration of $NH_4-N,\;PO_4-P,\;and\;SiO_2-Si$ in surface sediments.