• 제목/요약/키워드: high collision impact

검색결과 88건 처리시간 0.022초

증기제트 충돌하중 평가를 위한 CFD 해석 (CFD Analysis for Steam Jet Impingement Evaluation)

  • 최청열;오세홍;최대경;김원태;장윤석;김승현
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.58-65
    • /
    • 2016
  • Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.

차량용 레이더와 전파 천문 업무 사이의 간섭영향 연구 (The Interference Impact between Automotive Radar and Radio Astronomy Service)

  • 윤혜주;이일규;정용준
    • 한국위성정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.53-58
    • /
    • 2014
  • 국제적인 차량용 레이더는 22~26GHz 대역을 사용할 수 있도록 규정하고 있으나, 최근 전반적으로 위 주파수대역은 이용을 종료하는 추세이며, 차량의 사각지대 및 보행자 감지용 고해상도 차량용 레이더 도입을 위해 밀리미터파 대역 중 77~81GHz대역의 광대역 레이더로 전환할 예정이다. 그러나 현재 국제적으로 71~275GHz대역은 전파천문우주 연구를 위한 업무로 사용하도록 규정되어 있다. 이에 따라 위 대역의 차량용 레이더와 국내 전파천문업무 사이에 간섭이 있을 것으로 예상되어 간섭영향을 분석하고 보호이격거리를 도출하였다.

적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성 (Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle)

  • 김지훈;김정호;차천식;양인영
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

미시역학 소성모델을 이용한 충격하중을 받는 보강판의 파단 예측 (Fracture Estimation of Stiffened Plates under Impact Loading using Micromechanics Plasticity Model)

  • 정준모;조상래;김경수
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.611-621
    • /
    • 2009
  • This paper first reviews the physical meanings and the expressions of two representative strain rate models: CSM (Cowper-Symonds Model) and JCM (Johnson-Cook Model). Since it is known that the CSM and the JCM are suitable for low-intermediate and intermediate-high rate ranges, many studies regarding marine accidents such as ship collision/grounding and explosion in FPSO have employed the CSM. A formula to predict the material constant of the CSM is introduced from literature survey. Numerical simulations with two different material constitutive equations, classical metal plasticity model based on von Mises yield function and micromechanical porous plasticity model based on Gurson yield function, have been carried out for the stiffened plates under impact loading. Simulation results coincide with experimental results better when using the porous plasticity model.

3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석 (Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis)

  • 안동규;문경제;정창균;양동열
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

열차의 타고오름 해석을 위한 2차원 충돌동역학 모델링 기법 연구 (Study on a 2-Dimensional Dynamic Modeling Technique to Analyze the Overriding Phenomena of Rollingstock)

  • 김거영;구정서;권태수
    • 한국철도학회논문집
    • /
    • 제14권1호
    • /
    • pp.11-18
    • /
    • 2011
  • 본 논문은 열차의 타고오름 해석을 위한 새로운 2차원 다물체 동역학 모델링 방법을 제안하였다. 본 동역학 모델은 에너지 흡수구조/부품뿐만 아니라 차체의 변형도 고려하여 비선형 스프링, 댐퍼, 질량으로 구성되며 철도차량의 충돌에너지흡수량, 승객구간의 가속도, 연결 장치의 충격력, 차량간 타고오름 변위 등을 잘 예측할 수 있다. 제안된 방법으로 한국형고속열차를 차체 각 부분의 압괴 특성을 구하고 2차원 다물체 충돌동역학 모델을 구성하였다. 열차 대 열차 충돌 시나리오조건으로 2차원 동역학 모델을 시뮬레이션하고 3차원 가상시험 모델로 평가하였다. 그 결과 2차원 동역학 모델은 타고오름 거동을 잘 예측하였으며 차체변형을 고려한 모델링 기법이 타고오름 평가에 중요함을 확인하였다.

Stress wave propagation in clearance joints based on characteristics method

  • Tang, Ya-Qiong;Li, Tuan-Jie;Chen, Cong-Cong;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.781-788
    • /
    • 2017
  • In this paper, a stress wave model is established to describe the three states (separate, contact and impact) of clearance joints. Based on this stress wave model, the propagation characteristics of stress wave generated in clearance joints is revealed. First, the stress wave model of clearance joints is established based on the viscoelastic theory. Then, the reflection and transmission characteristics of stress wave with different boundaries are studied, and the propagation of stress wave in viscoelastic rods is described by the characteristics method. Finally, the stress wave propagation in clearance joints with three states is analyzed to validate the proposed model and method. The results show the clearance sizes, initial axial speeds and material parameters have important influences on the stress wave propagation, and the new stress waves will generate when the clearance joint in contact and impact states, and there exist some high stress region near contact area of clearance joints when the incident waves are superposed with reflection waves, which may speed up the damage of joints.

전방신호기가 교통사고에 미치는 영향 연구 (Impacts of Pre-signals on Traffic Crashes at 4-leg Signalized Intersections)

  • 김병은;이영인
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.135-146
    • /
    • 2013
  • PURPOSES : This study aimed to analyze the impact the operation of pre-signals at 4-leg signalized intersections and present primary environmental factors of roads that need to be considered in the installation of pre-signals. METHODS : Shift of proportions safety effectiveness evaluation method which assesses shifts in proportions of target collision types to determine safety effectiveness was applied to analyze traffic crash by types. Also, Empirical Bayes before/after safety effectiveness evaluation method was adapted to analyze the impact pre-signal installation. Negative binomial regression was conducted to determine SPF(safety performance function). RESULTS : Pre-signals are effective in reducing the number of head on, right angle and sideswipe collisions and both the total number of personal injury crashes and severe crashes. Also, it is deemed that each factor used as an independent variable for the SPF model has strong correlation with the total number of personal injury crashes and severe crashes, and impacts general traffic crashes as a whole. CONCLUSIONS: This study suggests the following should be considered in pre-signal installation on intersections. 1) U-turns allowed in the front and rear 2) A high number of roads that connect to the intersection 3) Many right-turn traffic flows 4) Crosswalks installed in the front and rear 5) Insufficient left-turn lanes compared to left-turn traffic flows or no left-turn-only lane.

도로안전시설용 시선유도봉의 신뢰성 평가 (Reliability Assessment of Tubular Markers Used for Road Safety Facilities)

  • 구현진;윤예석
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.91-103
    • /
    • 2012
  • Tubular markers for road safety facilities are used to lead the driver's sight line and separate the lanes on the road. Such tubular markers are usually installed on the road and frequently hit by vehicles, they are accordingly requested to assure the product durability. The traditional evaluation method of tubular markers include only quality tests of the material properties. However, most of consuming agencies in charge of road management at fields have proposed problems on long-term performance of the products hit by vehicles under various weather conditions. Therefore, the objectives of this study are to develop the reliability test methods and equipments to simulate the product failures of tubular markers due to vehicle collision and wheel compression and the delamination and discoloration of reflection sheets attached on the surface of the products under high and low temperatures.

한국형 고속전철 동력차 최종설계의 충돌안전도 분석 (Crashworthiness on the final design of the KHST power-car)

  • 노규석;구정서;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.235-242
    • /
    • 2000
  • The most important technology to improve crashworthiness of high speed trains is to design their front structures to absorb crash energy easily. In this paper, crashworthy designs of the front structures in KTX and KHST are compared by numerical simulation under SNCF accident scenario. Furthermore, to evaluate their crashworthiness tinder a typical real situation, the power cars are simulated for the accident collided against a deformable dump truck of 15 tons at 110 kph. The front structure of KHST, finally designed, shows a good crashworthy characteristics. Finally, the impact strength of coupling components is evaluated by analyzing a consist of the front three KHST units under scenario of train-to-train collision at 30 kph.

  • PDF