• Title/Summary/Keyword: high bone

Search Result 1,722, Processing Time 0.026 seconds

Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study

  • Tayman, Mahmure Ayse;Kamburoglu, Kivanc;Ocak, Mert;Ozen, Dogukan
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • Purpose: The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. Materials and Methods: Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075mm(high: HI) and 0.2mm(standard: Std), while microCT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor(TbPf), and structure model index (SMI). Results: When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values (P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different(P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods(P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. Conclusion: This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.

The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions (임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석)

  • Jeung, Sin-Young;Kim, Chang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Biodegradable Hydroxyapatite/Chitosan Composites on the Bone Defect of Canine Model

  • Kim, Jooho;Lee, Dongbin;Heo, Suyoung;Kim, Namsoo
    • Journal of Veterinary Clinics
    • /
    • v.34 no.6
    • /
    • pp.410-413
    • /
    • 2017
  • Composites of hydroxyapatite (HAp) and chitosan (CS) have been successfully used in bone healing in humans and animals. However, the characteristics of HAp and CS are different. Therefore, the effects of HAp/CS composites on canine bone formation could differ according to their ratio. This study investigated the therapeutic effects of different contents ratios (100, 80:20, 60:40 wt%) on bone defects in a canine model. Thirty intrabony cylindrical defects were created in the humeruses and femurs of 5 beagle dogs, and then the defects were implanted with different composites. The evaluations were performed using radiographs obtained at 10 weeks post-surgery and by histological findings. In radiographic evaluation including the grades of bone filling, periosteal and endosteal reactions, pure hydroxyapatite composite had a significant effect on bone filling, and chitosan containing the composites showed vigorous responses at the periosteum and endosteum. In histological findings, the defect implanted with pure hydroxyapatite had healed completely into mature bony tissue with an obvious osteon structure, and the defect implanted with chitosan containing the composites had the amount of fibrous connective tissue increased significantly within the cortical bone tissue. The results indicate that hydroxyapatite/chitosan composites are therapeutically useful, promoting effective bone healing in defects when the ratio of hydroxyapatite is high and enhanced fibrous connective tissue formation at the periosteum as more chitosan is added.

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

Regulation of bone formation by high glucose in PDL cells

  • Jung, In-Ok;Zhang, Cheng-Gao;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.80-80
    • /
    • 2003
  • Insulin-dependent or Type 1 diabetes mellitus (IDDM) has been associated with an increased severity of periodontal disease. Since periodontal ligament (PDL) cells play a significant role in maintenance and regeneration of mineralized tissue, the success of procedures, such as guided tissue regeneration, is directly related to the ability of these cells to augment mineralized tissue. In this study, we investigated the time- and dose-dependent effect of high glucose on the proliferation and collagen synthesis of human periodontal ligament (PDL) cells. PDL cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of PDL cells as a time- and dose-dependent manner as evidenced by MTT assay. PDL cells were cultured in high glucose media (22mM, 33mM, 44mM) for 24 h. The ratio of collagen content to total protein was evaluated, and the gene expression of type I collagen was assessed by RT - PCR. The high concentration of glucose inhibited collagen synthesis, a marker of bone formation activity. This study indicated high glucose concentration could alter the metabolism of periodontal ligament cell, leading to alveolar bone destruction.

  • PDF

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF

Optimization of a Multi-Step Procedure for Isolation of Chicken Bone Collagen

  • Cansu, Ümran;Boran, Gökhan
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.431-440
    • /
    • 2015
  • Chicken bone is not adequately utilized despite its high nutritional value and protein content. Although not a common raw material, chicken bone can be used in many different ways besides manufacturing of collagen products. In this study, a multi-step procedure was optimized to isolate chicken bone collagen for higher yield and quality for manufacture of collagen products. The chemical composition of chicken bone was 2.9% nitrogen corresponding to about 15.6% protein, 9.5% fat, 14.7% mineral and 57.5% moisture. The lowest amount of protein loss was aimed along with the separation of the highest amount of visible impurities, non-collagen proteins, minerals and fats. Treatments under optimum conditions removed 57.1% of fats and 87.5% of minerals with respect to their initial concentrations. Meanwhile, 18.6% of protein and 14.9% of hydroxyproline were lost, suggesting that a selective separation of non-collagen components and isolation of collagen were achieved. A significant part of impurities were selectively removed and over 80% of the original collagen was preserved during the treatments.

A Study on the Effect of the Craniocervical Posture on Hyoid Bone Movement with Sitting Posture in Wheelchair (휠체어에 앉은 자세에서 두경부 자세가 설골 움직임에 미치는 효과에 관한 연구)

  • Cha, Su Min;Kim, Hee Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.331-336
    • /
    • 2010
  • The purpose of this study was to identify the effect of the craniocervical posture on swallowing and hyoid bone movement with sitting posture in wheelchair, and to provide basic data for developing a treatment program for dysphagia. A total of sixty healthy adults without a history of dysphagia who were guardians or care assistants of inpatients at Hospital K underwent video fluoroscopy performed by physiatrists from April to July 2009. The results of the fluoroscopy were analyzed based on the measurement of hyoid bone movements. The hyoid bone movement(horizontal, vertical, and diagonal) was significantly high in the neutral craniocervical, chin-tuck, and sixty degrees extension postures, in descending order(p<.05). It was found that the neutral craniocervical posture is the most effective posture for hyoid bone movement with sitting posture in wheelchair.

Effects of trabecular bone microstructure on stress distribution within premolar tooth and implant (망상골의 구조와 밀도가 치과용 임플란트와 하악골에 미치는 영향)

  • Chon Chang Soo;Lee Sang Up;Lee Kyoung Joung;Kim Han Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.210-217
    • /
    • 2005
  • This study examined the effect of cancellous bone microstructure on stress distribution within a premolar tooth and a dental implant against mastication force by the micro-finite element method (FEM). The mandibular specimen including a premolar was obtained from a cadaver and scanned with micro-CT to obtain CT images. FE models were reconstructed from CT images at mid-sagittal plane of the tooth. Six models were generated and analyzed for different structure and density in cancellous bone. Stress distributions fur each implant (or tooth) and the surrounding bone were compared. The study indicated that the microstructure of cancellous bone should be considered in finite element analysis to produce reasonable results and thus implant systems with high success rate.

Bone regeneration and graft material resorption in extraction sockets grafted with bioactive silica-calcium phosphate composite (SCPC) versus non-grafted sockets: clinical, radiographic, and histological findings

  • Adel-Khattab, Doaa;Afifi, Nermeen S.;el Sadat, Shaimaa M. Abu;Aboul-Fotouh, Mona N.;Tarek, Karim;Horowitz, Robert A.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.418-434
    • /
    • 2020
  • Purpose: The purpose of the present study was to evaluate the effect of silica-calcium phosphate composite (SCPC) granules on bone regeneration in extraction sockets. Methods: Ten patients were selected for a split-model study. In each patient, bone healing in SCPC-grafted and control ungrafted sockets was analyzed through clinical, radiographic, histomorphometric, and immunohistochemical assessments 6 months postoperatively. Results: A radiographic assessment using cone-beam computed tomography showed minimal ridge dimension changes in SCPC-grafted sockets, with 0.39 mm and 1.79 mm decreases in height and width, respectively. Core bone biopsy samples were obtained 6 months post-extraction during implant placement and analyzed. The average percent areas occupied by mature bone, woven bone, and remnant particles in the SCPC-grafted sockets were 41.3%±12%, 20.1%±9.5%, and 5.3%±4.4%, respectively. The percent areas of mature bone and woven bone formed in the control ungrafted sockets at the same time point were 31%±14% and 24.1%±9.4%, respectively. Histochemical and immunohistochemical analyses showed dense mineralized bundles of type I collagen with high osteopontin expression intensity in the grafted sockets. The newly formed bone was well vascularized, with numerous active osteoblasts, Haversian systems, and osteocytes indicating maturation. In contrast, the new bone in the control ungrafted sockets was immature, rich in type III collagen, and had a low osteocyte density. Conclusions: The resorption of SCPC granules in 6 months was coordinated with better new bone formation than was observed in untreated sockets. SCPC is a resorbable bone graft material that enhances bone formation and maturation through its stimulatory effect on bone cell function.