• Title/Summary/Keyword: high angle case

Search Result 474, Processing Time 0.03 seconds

Differences in Static Lower Extremity Alignment according to the History of Lateral Ankle Sprain: Efficacy and Limitation of Static Lower Limb Alignment Measurement as a Predictor of Lateral Ankle Sprain (외측 발목 염좌 병력에 따른 정적 하지 정렬 차이: 외측 발목 염좌의 예측인자로서 정적 하지 정렬 검사의 효용성과 한계점)

  • Jeon, Hyung Gyu;Ha, Sunghe;Lee, Inje;Kang, Tae Kyu;Kim, Eun Sung;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Objective: The aim of this study was to investigate 1) the difference in static lower extremity alignment (SLEA) according to a history of lateral ankle sprain (LAS), 2) to identify SLEA factors affecting LAS, and 3) to present the cut-off value and 4) the usefulness and limitations of the SLEA measurement. Method: This case-control study recruited 88 men (age: 27.78±4.69 yrs) and 39 women (age: 24.62±4.20 yrs) subjects with and without LAS. SLEA measurement protocol included Q angle, tibiofemoral angle, genu recurvatum, rear foot (RF) angle, tibal varum and torsion, navicular drop, ankle dorsiflexion range of motion (DF ROM). Independent t-test, logistic regression and receiver operating characteristic (ROC) curve were used for statistical analysis. Results: Men with a history of LAS had significantly smaller Q angles both in standing and in supine position, while women with a history of LAS had significantly greater DF ROM in non-weight bearing (NWB; p < 0.05). Logistic regression model suggests tibial varum (OR = 0.779, p = 0.021) and WB DF ROM (OR = 1.067, p = 0.045) were associated with LAS in men. In case of women, there were no significant SLEA factors for LAS, however, ROC curve analysis revealed standing RF angle (AUC = 0.647, p = 0.028) and NWB DF ROM (AUC = 0.648, p = 0.026) could be affecting factors for LAS. Conclusion: There are differences in SLEA according to the history of LAS, furthermore, the identified items were different by sex. In case of men, tibial varum and WB DF ROM affect LAS occurrence. Standing RF angle and NWB DF ROM of women could be a predictor for LAS. However, since the sensitivity and specificity in most of the SLEA measurements are low, kinematic in dynamic tasks should be considered together for a more accurate evaluation of LAS risk.

Kinematical Analysis of Heel-Brake Stop in Inline Skate (인라인 스케이트(Inline Skate) 힐 브레이크(Heel-Brake) 정지에 관한 운동학적 분석)

  • Han, Jae-Hee;Lim, Yong-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2005
  • This study has a purpose on contributing to apprehend safe and right way to stop to the inline skate beginners and to the instructors who teaches line skating on the basis for the result of the kinematical analysis on Heel brake stop movement of the inline skate, focusing on the displacement on COG, angle displacement of ankle joint, angle displacement of knee joint, angle displacement of hip joint, using a 3D image method by DLT. To achieve this goal, we analysed the kinematical factor of the 3 well-trained inline skating instructors and obtained the following results. 1. During the movement of heel-brake stop, when strong power was given to a stable and balanced stop and the lower limbs, if the physical centroid is lowered the stability increases, and if it is placed high from the base surface, as the stability decreases compared to the case of low physical centroid, we should make a stop by placing a physical centroid in the base surface and lowering the hight of physical centroid. 2. To make a stable and balanced stop and to provide a strong power to the lower limbs, it is advisable to make a stop by decreasing an angle displacement of ankle joint during a "down" movement. In case of the left ankle joint, in all events and phases the dorsiflexion angle showed a decrease. Nevertheless, in the case of the right ankle joint, the dorsiflexion angle shows an increase after a slight decrease. The dorsiflexion angle displacement of ankle joint can be diminished because of the brake pad of the rear axis frame of the right side inline skate by raising a toe, but cannot be more decreased if certain degree of an angle is made by a brake pad touching a ground surface. To provide a power to a brake pad, it is recommended to place a power by lowering a posture making the dorsiflexion angle of the left ankle joint relatively smaller than that of the right ankle. 3. To make a stable and balanced stop and to add a power to a brake pad, the power must be given to the lower limbs in lowering the hight of physical centroid. For this, it is recommended to make a down movement by decreasing the flexion angle of a knee joint and it is necessary to make a down movement by a regular decrease of the angle displacement of knee joint rather than a swift down movement in every event and phase. 4. The right angle displacement of hip joint is made by lowering vertically the hight of physical centroid as leaning slightly forward. If too narrow angle displacement of hip joint is made by leaning forward too much, the balance is lost during the stop by placing the center in front. To make a stable and balance stop and to place a strong power to the lower limbs, it is recommendable to make a narrow angle by lower the hip joint angle. However, excessive leaning of the upper body to make the angle too narrow, can cause an instable stop and loss of physical centroid. After this study, it is considered to assist the kinematical understanding during the heel brake stop movement of the inline skate, and, to present basic data in learning a method of stable and balanced stop for the inline skating beginners or for the inline skate instructors in the present situation of the complete absence of the study in inline skating.

Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity (입자충격속도에 따른 세라믹재료의 콘크랙 형상 변화)

  • O, Sang-Yeop;Sin, Hyeong-Seop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.380-386
    • /
    • 2002
  • Damage behaviors induced in silicon carbide by an impact of particle having different material and size were investigated. Especially, the influence of the impact velocity of particle on the cone crack shape developed was mainly discussed. The damage induced by spherical impact was different depending on the material and size of particles. Ring cracks on the surface of specimen were multiplied by increasing the impact velocity of particle. The steel particle impact produced larger ring cracks than that of SiC particle. In the case of high velocity impact of SiC particle, radial cracks were produced due to the inelastic deformation at the impact site. In the case of the larger particle impact, the damage morphology developed was similar to the case of smaller particle one, but a percussion cone was farmed from the back surface of specimen when the impact velocity exceeded a critical value. The zenithal angle of cone cracks developed into SiC material decreased monotonically with increasing of the particle impact velocity. The size and material of particle influenced more or less on the extent of cone crack shape. An empirical equation, $\theta$= $\theta$$\sub$st/, v$\sub$p/(90-$\theta$$\sub$st/)/500 R$\^$0.3/($\rho$$_1$/$\rho$$_2$)$\^$$\frac{1}{2}$/, was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of cone crack. It is expected that the empirical equation will be helpful to the computational simulation of residual strength in ceramic components damaged by the particle impact.

Effect of Swirl Cup Geometry on Spray Characteristics in Gas Turbine Engine (가스터빈 연소기의 스월컵 형상이 분무특성에 미치는 영향)

  • 김동준;박종훈;고현석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.29-36
    • /
    • 2002
  • Experiments have been performed to investigate the effect of secondary venturi tip angle on flow and spray characteristics in gas turbine combustor with a swirl cup assembly. Three variations of secondary venturi tip angle are made: converging, straight and diverging angles. It is found that the variation of venturi tip angle results in the significant changes of flow and spray characteristics in gas turbine combustors, such as the size and location of recirculation zones. drop size and mass distribution affecting combustion efficiency and NOx emissions. In diverge case, central toroidal recirculation zone(CTRZ) exists near the exit, which is known to be beneficial for flame stability. But in converge case, the finest SMD distribution and uniform mass distribution are found and CTRZ is longer than other cases. Consequently, high combustion efficiency and low pollutant emission are expected in converge case.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine (직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 .)

  • Kim Dongwook;Kang Jeongjung;Choi Gyungmin;Kim Duckjool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

An analysis on the Earth geoid surface variation effect for use of the tilt sensor in celestial navigation system

  • Suk, Byong-Suk;Yoon, Jae-Cheol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1867-1870
    • /
    • 2005
  • The celestial navigation is one of alternatives to GPS system and can be used as a backup of GPS. In the celestial navigation system using more than two star trackers, the vehicle's ground position can be solved based on the star trackers' attitude information if the vehicle's local vertical or horizontal angle is given. In order to determine accurate ground position of flight vehicle, the high accurate local vertical angle measurement is one of the most important factors for navigation performance. In this paper, the Earth geophysical deflection was analyzed in the assumption of using the modern electrolyte tilt sensor as a local vertical sensor for celestial navigation system. According to the tilt sensor principle, the sensor measures the tilt angle from gravity direction which depends on the Earth geoid surface at a given position. In order to determine the local vertical angle from tilt sensor measurement, the relationship between the direction of gravity and the direction of the Earth center should be analyzed. Using a precision orbit determination software which includes the JGM-3 Earth geoid model, the direction of the Earth center and the direction of gravity are extracted and analyzed. Appling vector inner product and cross product to the both extracted vectors, the magnitude and phase of deflection angle between the direction of gravity and the direction of the Earth center are achieved successfully. And the result shows that the angle differences vary as a function of latitude and altitude. The maximum 0.094$^{circ}$angle difference occurs at 45$^{circ}$latitude in case of 1000 Km altitude condition.

  • PDF

Vertical Alignment of Liquid Crystal by Ion Beam Irradiation (이온빔 배향에 의한 수직 배향막의 액정 배향)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Kim, Jong-Hwan;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF

A Study on the Optimal Angle as Modified Tangential Projection of Knee Bones (무릎뼈의 변형된 접선방향 검사 시 최적의 입사각에 관한 연구)

  • Oh, Wang-Kyun;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.919-926
    • /
    • 2021
  • In this study, we wanted to find out the optimal angle as a modified tangential projection of the patella. In the experiment, we used Kyoto Kagaku's PBU-50 phantom. In the supine position, the F-T angle was set to 95°, 105°, 115°, 125°, 135°, 145°, and Patella tangential projection images were obtained by varying the X-ray tube angle by 5° so that the angle between the X-ray centerline and tibia at each angle was 5~20°. Image J was used for image analysis and the congruence angle, lateral patellofemoral angle, patellofemoral index and contrast to noise ratio(CNR) were also measured. SPSS 22 was used for statistical analysis, and the mean values of congruence angle, patellofemoral angle, patellofemoral index, and CNR were compared with Merchant method through one-way batch analysis and corresponding sample t-test. As a result of the study, in the case of congruence angle, the angle of incidence of the knee-angle X-ray centerline was 105°-72.5° (20° tangential irradiation), 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-82.5° (20° tangential irradiation), lateral patellofemoral angle is 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-72.5° (10° tangential irradiation), patellofemoral index is 115°-72.5° (15° tangential irradiation) and 125°-72.5° (10° tangential irradiation) were not significantly different from Merchant method (p> .05). In case of CNR, it is not different from Merchant method at 105°-67.5°, 72.5° (15, 20° tangential irradiation), 115°-67.5°, 72.5°, 77.5° (10, 15, 20° tangential irradiation). (P> .05). Based on the results of this study, high diagnostic value images can be obtained by setting the knee angle and the angle of incidence of the X-ray tube to 115°-72.5° (15° tangential irradiation) during the modified tangential examination of the knee bone. It was confirmed.