• 제목/요약/키워드: high Temperature oxidation

Search Result 1,139, Processing Time 0.027 seconds

γ'-Precipitation Free Zone and γ' Rafting Related to Surface Oxidation in Creep Condition of Directionally Solidified CM247LC Superalloy (일방향 응고 CM247LC 초내열합금의 크리프 조건에서 표면 산화와 연계된 γ'-석출 고갈 지역 및 γ' 조대화)

  • Byung Hak Choe;Kwang Soo Choi;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Dong Su Kang;Seong-Moon Seo
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.406-413
    • /
    • 2023
  • This study used optical and scanning electron microscopy to analyze the surface oxidation phenomenon that accompanies a γ'-precipitate free zone in a directional solidified CM247LC high temperature creep specimen. Surface oxidation occurs on nickel-based superalloy gas turbine blades due to high temperature during use. Among the superalloy components, Al and Cr are greatly affected by diffusion and movement, and Al is a major component of the surface oxidation products. This out-diffusion of Al was accompanied by γ' (Ni3Al) deficiency in the matrix, and formed a γ'-precipitate free zone at the boundary of the surface oxide layer. Among the components of CM247LC, Cr and Al related to surface oxidation consist of 8 % and 5.6 %, respectively. When Al, the main component of the γ' precipitation phase, diffused out to the surface, a high content of Cr was observed in these PFZs. This is because the PFZ is made of a high Cr γ phase. Surface oxidation of DS CM247LC was observed in high temperature creep specimens, and γ'-rafting occurred due to stress applied to the creep specimens. However, the stress states applied to the grip and gauge length of the creep specimen were different, and accordingly, different γ'-rafting patterns were observed. Such surface oxidation and PFZ and γ'-rafting are shown to affect CM247LC creep lifetime. Mapping the microstructure and composition of major components such as Al and Cr and their role in surface oxidation, revealed in this study, will be utilized in the development of alloys to improve creep life.

High-Temperature Oxidation of Ti Containing Stainless Steel in O2-N2 Atmosphere

  • Onishi, Hidenori;Saeki, Isao;Furuichi, Ryusaburo;Okayama, Toru;Hanamatsu, Kenko;Shibayama, Tamaki;Takahashi, Heishichiro;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.140-147
    • /
    • 2004
  • High temperature oxidation of Fe-19Cr and Fe-19Cr-0.2Ti alloys is studied at 1173-1373 K in 16.5 kPa $O_2$ - balances $N_2$ atmosphere aimed at clarifying the effect of titanium addition. Oxidation rate of Fe-19Cr alloy was accelerated with titanium. For both alloys chromium rich $(Fe,\;Cr)_2O_3$ was formed as a major oxidation product. On Fe-19Cr-0.2Ti alloy, a thin layer composed of spinel type oxide and titanium oxide was also formed and an internal oxidation of titanium was observed. Titanium was concentrated at the oxide surface and internal oxidation zone but a small amount of titanium was also found in the intermediate corundum type $(Fe,\;Cr)_2O_3$ layer. Crystals of corundum type $(Fe,\;Cr)_2O_3$ formed on Fe-19Cr alloy are coarse but that formed on Fe-19Cr -0.2Ti alloys were fine and columnar. Reason for the difference in oxidation kinetics and crystal structure will be discussed relating to the distribution of aliovalent titanium in corundum type $(Fe,\;Cr)_2O_3$ oxide layer.

A Study on the Oxidation Resistance of Aluminum Cast Iron by Aluminum Content (알루미늄 함량에 따른 알루미늄 주철의 내산화성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.135-145
    • /
    • 2020
  • Aluminum cast iron has excellent oxidation resistance, sulfurization resistance, and corrosion resistance. However, the ductility at room temperature is insufficient, and at temperatures above 600?, the strength drops sharply and practicality is limited. In the case of heat-resistant cast iron, high-temperature materials containing Cr and Ni account for 30 to 50% or more. However, these high-temperature materials are expensive. Aluminum heat-resistant cast iron is considered as a substitute for expensive heat-resistant materials. Oxidation due to the aging temperature and holding time conditions increases more in 0 wt.% Al-cast iron than in 2 and 4 wt.% Al-cast iron according to oxidized weight and gravimetric oxide layer thickness measurements. As a result of observing the cross-section of the oxide layer, it was found to contain 0 wt.% of Al-cast iron silicon oxide-containing SiO2 or Fe2SiO4 oxide film. In cast iron containing aluminum, the thickness of the internal oxide layer due to aluminum increases as the aging temperature and retention time increase, and the amount of the iron oxide layer generated on the surface decreases.

Effect of NO on Catalytic Soot Oxidation in Tight Contact with $Pt/CeO_2$ Using a Flow Reactor System ($Pt/CeO_2$ 촉매와 Tight Contact 한 상태의 Model Soot 산화에 NO가 미치는 영향에 관한 실험적 연구)

  • Lee, Dong-Il;Song, Chang-Hoon;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.52-56
    • /
    • 2011
  • Active regeneration in CDPF requires $O_2$ which regenerates soot at high temperature. However, small amount of NO can interrupt $O_2$ regeneration in CDPF. To verify this phenomena, soot oxidation experiments using a flow reactor with a $Pr/CeO_2$ catalyst are carried out to simulate Catalyzed Diesel Particulate Filter (CDPF) phenomena. Catalytic soot oxidation with and without small amount of NO is conducted under tight contact condition. As the heating rate rises, the temperature gap of maximum reaction rate is increased between with and without 50ppm NO. To accelerate the $NO_2$ de-coupling effect, CTO process is performed to eliminate interfacial contact for that time. As CTO process is extended, temperature which indicates peak reaction rate increases. From this result, it is found that small amount of NO can affect tight contact soot oxidation by removal of interfacial contact between soot and catalyst.

Effect of the Arc Furnace Manufacturing Process, Blast Furnace Manufacturing Process, and Carbon Content on the High-temperature Oxidation of Hot-rolled Steel between 650 and 900℃ (열간 압연강의 600~900℃에서의 고온산화에 미치는 전기로제조법, 고로제조법 및 탄소량의 영향)

  • Kim, Min Jung;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.907-913
    • /
    • 2010
  • Hot-rolled steel plates of SPHC and SS400 were oxidized at 600, 750 and $900^{\circ}C$ for 2 hr in air. With an increase in the oxidation temperature, their oxidation rates increased, and this was accompanied by the formation of pores and cracks in the thickened oxide scales, which were non-adherent. SPHC steels manufactured by either an arc furnace or a blast furnace displayed similar oxidation rates, indicating that their oxidation rates were insensitive to the manufacturing process. Medium-carbon SS400 steel displayed somewhat faster oxidation rates than low-carbon SS400 steel, indicating that the carbon content did not significantly influence the oxidation rates.

The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials (Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Effect of Oxidation on Hot Ductility Behavior of Plain Carbon Steel (탄소강의 열간연성 거동에 미치는 산화의 영향)

  • Park, Tae Eun;Lee, Un Hae;Sohn, Kwang Suk;Lee, Sung Keun;Kim, In Soo;Yim, Chang Hee;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • The effects of oxidation behavior on the hot ductility of plain carbon steels were investigated at various temperatures in order to simulate the continuous casting process more precisely, in which the process undergoes in air atmosphere rather than Ar atmosphere. The high temperature oxidation behavior and scale morphology of the carbon steels exposed to the air and Ar atmosphere at various temperatures were also investigated in order to assess the mechanism of the RA value decreasing in an air atmosphere. The RA values obtained from the air atmosphere were marked below 45% by the test temperature, except for over 1000${^{\circ}C}$, with the RA values remaining in low values in both the low and high temperature region, at which the RA values generally recovered in the Ar atmosphere. The surface roughness of the specimen was developed by external and internal oxidation when the specimen was deformed in an air atmosphere at high temperature, with the result being the stress concentrated at the roughness of the specimen surface, resulting in low RA values. The hot ductility in the air atmosphere was found to be likely controlled by the oxidation rate instead of the microstructures corresponding to test temperatures.

High Temperature Oxidation Behavior of Plasma-sprayed Ti(Al,O)/$Al_2O_3$ Coatings on SS41 Steel (Ti(Al,O)/$Al_2O_3$ 플라즈마 코팅한 SS41의 고온산화 거동)

  • Choi, G.S.;Woo, K.D.;Lee, H.B.;Jeon, J.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2007
  • High velocity oxy-fuel (HVOF) spraying was used to coat Ti(Al,O)/$Al_2O_3$ powder onto the SS41 steel plate. Macrostructure of the coated specimen has been investigated by scanning electron micrograph (SEM). High temperature oxidation behavior of the coated specimen and SS41 steel have been studied. From the results of SEM observation, Ti(Al,O)/$Al_2O_3$ powder was coated well onto the substrate SS41 steel. Porosity onto the coated layer was only 0.38%. The oxidation results showed that Ti(Al,O)/$Al_2O_3$ powder coated SS41 steel have improved little oxidation resistance at $900^{\circ}C$ in air, but improved remarkably oxidation resistance at $800^{\circ}C $ in air compare to the substrate SS41 steel.

The Effect of Hydrogen in the Nuclear Fuel Cladding on the Oxidation under High Temperature and High Pressure Steam (고압 수증기하 산화에서 핵연료 피복관내 수소효과 연구)

  • Jung, Yunmock;Jeong, Seonggi;Park, Kwangheon;Noh, Seonho
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The characteristics of oxidation for the Zry-4 was measured in the $800^{\circ}C$ and high steam pressure (50 bar, 75 bar, 100 bar) conditions, using an apparatus for high pressure steam oxidation. The effect of accelerated oxidation by high-pressure steam was increased more than 60% in hydrogen-charged cladding than normal cladding. This difference between hydrogen charged claddings and normal claddings tends to be larger as the higher pressure. The accelerated oxidation effect of hydrogen charging cladding is regarded as the hydrogen on the metal layer affects the formation of the protective oxide layer. The creation of the sound monoclinic phase in Zry-4 oxidation influences reinforcement of corrosion-resistance of the oxide layer. The oxidation is estimated to be accelerated due to the creation of equiaxial type oxide film with lower corrosion resistance than that of columnar type oxide film. When tetragonal oxide film transformed into the monoclinic oxide film, surface energy of the new monoclinic phase reduced by hydrogen in the metal layer.