• Title/Summary/Keyword: hierarchical wireless sensor networks

Search Result 87, Processing Time 0.028 seconds

Analysis on Security Vulnerabilities of a Password-based User Authentication Scheme for Hierarchical Wireless Sensor Networks (계층적 무선 센서 네트워크를 위한 패스워드 기반 사용자 인증 스킴의 보안 취약점 분석)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • The numerous improved schemes of user authentication based on password have been proposed in order to prevent the data access from the unauthorized person. The importance of user authentication has been remarkably growing in the expanding application areas of wireless sensor networks. Recently, emerging wireless sensor networks possesses a hierarchy among the nodes which are divided into cluster heads and sensor nodes. Such hierarchical wireless sensor networks have more operational advantages by reducing the energy consumption and traffic load. In 2012, Das et al. proposed a user authentication scheme to be applicable for the hierarchical wireless sensor networks. Das et al. claimed that their scheme is effectively secure against the various security flaws. In this paper, author will prove that Das et al.'s scheme is still vulnerable to man-in-the-middle attack, password guessing/change attack and does not support mutual authentication between the user and the cluster heads.

Hierarchical Real-Time MAC Protocol for (m,k)-firm Stream in Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2010
  • In wireless sensor networks (WSNs), both efficient energy management and Quality of Service (QoS) are important issues for some applications. For creating robust networks, real-time services are usually employed to satisfy the QoS requirements. In this paper, we proposed a hierarchical real-time MAC (medium access control) protocol for (m,k)-firm constraint in wireless sensor networks shortly called HRTS-MAC. The proposed HRTS-MAC protocol is based on a dynamic priority assignment by (m,k)-firm constraint. In a tree structure topology, the scheduling algorithm assigns uniform transmitting opportunities to each node. The paper also provides experimental results and comparison of the proposed protocol with E_DBP scheduling algorithm.

A Multi-Chain Based Hierarchical Topology Control Algorithm for Wireless Sensor Networks

  • Tang, Hong;Wang, Hui-Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3468-3495
    • /
    • 2015
  • In this paper, we present a multi-chain based hierarchical topology control algorithm (MCHTC) for wireless sensor networks. In this algorithm, the topology control process using static clustering is divided into sensing layer that is composed by sensor nodes and multi-hop data forwarding layer that is composed by leader nodes. The communication cost and residual energy of nodes are considered to organize nodes into a chain in each cluster, and leader nodes form a tree topology. Leader nodes are elected based on the residual energy and distance between themselves and the base station. Analysis and simulation results show that MCHTC outperforms LEACH, PEGASIS and IEEPB in terms of network lifetime, energy consumption and network energy balance.

Assessing Throughput and Availability based on Hierarchical Clustering in Wireless Sensor Networks (계층적 클러스터링을 기반으로 하는 무선 센서 네트워크의 Throughput 과 Availability 평가)

  • Lee Jun-Hyuk;Oh Young-Hwan
    • Journal of Applied Reliability
    • /
    • v.5 no.4
    • /
    • pp.465-486
    • /
    • 2005
  • A unreliable network system results in unsatisfied performance. A performance criterion of a network is throughput and availability. One of the most compelling technological advances of this decade has been the advent of deploying wireless networks of heterogeneous smart sensor nodes for complex information gathering tasks, The advancement and popularization of wireless communication technologies make more efficiency to network devices with wireless technology than with wired technology. Recently, the research of wireless sensor network has been drawing much attentions. In this paper, We evaluate throughput and availability of wireless sensor network, which have hierarchical structure based on clustering and estimate the maximum hroughput, average throughput and availability of the network considering several link failure patterns likely to happen at a cluster consisted of sensor nodes. Also increasing a number of sensor nodes in a cluster, We analysis the average throughput and availability of the network.

  • PDF

Clustering Algorithm of Hierarchical Structures in Large-Scale Wireless Sensor and Actuator Networks

  • Quang, Pham Tran Anh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.473-481
    • /
    • 2015
  • In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for subclusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.

A Method to Support Mobile Sink Node in a Hierarchical Routing Protocol of Wireless Sensor Networks (무선 센서 네트워크를 위한 계층적 라우팅 프로토콜에서의 이동 싱크 노드 지원 방안)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1B
    • /
    • pp.48-57
    • /
    • 2008
  • Wireless sensor networks are composed of a lot of sensor nodes and they are used to monitor environments. Since many studies on wireless sensor networks have considered a stationary sink node, they cannot provide fully ubiquitous applications based on a mobile sink node. In those applications, routing paths for a mobile sink node should be updated while a sink node moves in order to deliver sensor data without data loss. In this paper, we propose a method to continuously update routing paths for a mobile sink node which can be extended on hierarchical multi-hop routing protocols in wireless sensor networks. The efficiency of the proposed scheme has been validated through comparing existing method using a location based routing protocol by extensive computer simulation.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Practical Data Transmission in Cluster-Based Sensor Networks

  • Kim, Dae-Young;Cho, Jin-Sung;Jeong, Byeong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.224-242
    • /
    • 2010
  • Data routing in wireless sensor networks must be energy-efficient because tiny sensor nodes have limited power. A cluster-based hierarchical routing is known to be more efficient than a flat routing because only cluster-heads communicate with a sink node. Existing hierarchical routings, however, assume unrealistically large radio transmission ranges for sensor nodes so they cannot be employed in real environments. In this paper, by considering the practical transmission ranges of the sensor nodes, we propose a clustering and routing method for hierarchical sensor networks: First, we provide the optimal ratio of cluster-heads for the clustering. Second, we propose a d-hop clustering scheme. It expands the range of clusters to d-hops calculated by the ratio of cluster-heads. Third, we present an intra-cluster routing in which sensor nodes reach their cluster-heads within d-hops. Finally, an inter-clustering routing is presented to route data from cluster-heads to a sink node using multiple hops because cluster-heads cannot communicate with a sink node directly. The efficiency of the proposed clustering and routing method is validated through extensive simulations.

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

A Hierarchical Cluster Tree Based Address Assignment Method for Large and Scalable Wireless Sensor Networks (대규모 무선 센서 네트워크를 위한 계층적 클러스터 트리 기반 분산 주소 할당 기법)

  • Park, Jong-Jun;Jeong, Hoon;Hwang, So-Young;Joo, Seong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1514-1523
    • /
    • 2009
  • It is well known that the current wireless sensor networks addressing methods do not work efficiently in networks more than a few hundred nodes. A standard protocol in ZigBee-Standard feature in ZigBee 2007 gives balanced tree based address assignment method with distributed manner. However, it was limited to cover less than hundreds of sensor nodes due to the wasteful use of available address space, because composed sensor networks usually make an unbalanced tree topology in the real deployment. In this paper, we proposed the hierarchical cluster tree based address assignment method to support large and scalable networks. This method provides unique address for each node with distributed manner and supports hierarchical cluster tree on-demand. Simulation results show that the proposed method reduces orphan nodes due to the address exhaustion and supports larger network with limited address space compared with the ZigBee distributed address assignment method defined in ZigBee-Standard feature in ZigBee 2007.