• Title/Summary/Keyword: hierarchical pointer networks

Search Result 2, Processing Time 0.016 seconds

Coreference Resolution using Hierarchical Pointer Networks (계층적 포인터 네트워크를 이용한 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.542-549
    • /
    • 2017
  • Sequence-to-sequence models and similar pointer networks suffer from performance degradation when an input is composed of multiple sentences or when the length of the input sentence is long. To solve this problem, this paper proposes a hierarchical pointer network model that uses both the word level and sentence level information to encode input sequences composed of several sentences at the word level and sentence level. We propose a hierarchical pointer network based coreference resolution that performs a coreference resolution for all mentions. The experimental results show that the proposed model has a precision of 87.07%, recall of 65.39% and CoNLL F1 74.61%, which is an improvement of 21.83% compared to an existing rule-based model.

Multi-task learning with contextual hierarchical attention for Korean coreference resolution

  • Cheoneum Park
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.93-104
    • /
    • 2023
  • Coreference resolution is a task in discourse analysis that links several headwords used in any document object. We suggest pointer networks-based coreference resolution for Korean using multi-task learning (MTL) with an attention mechanism for a hierarchical structure. As Korean is a head-final language, the head can easily be found. Our model learns the distribution by referring to the same entity position and utilizes a pointer network to conduct coreference resolution depending on the input headword. As the input is a document, the input sequence is very long. Thus, the core idea is to learn the word- and sentence-level distributions in parallel with MTL, while using a shared representation to address the long sequence problem. The suggested technique is used to generate word representations for Korean based on contextual information using pre-trained language models for Korean. In the same experimental conditions, our model performed roughly 1.8% better on CoNLL F1 than previous research without hierarchical structure.