• 제목/요약/키워드: hierarchical fault propagation

검색결과 3건 처리시간 0.019초

Hierarchical fault propagation of command and control system

  • Zhang, Tingyu;Huang, Hong-Zhong;Li, Yifan;Huang, Sizhe;Li, Yahua
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.791-797
    • /
    • 2022
  • A complex system is comprised of numerous entities containing physical components, devices and hardware, events or phenomena, and subsystems, there are intricate interactions among these entities. To reasonably identify the critical fault propagation paths, a system fault propagation model is essential based on the system failure mechanism and failure data. To establish an appropriate mathematical model for the complex system, these entities and their complicated relations must be represented objectively and reasonably based on the structure. Taking a command and control system as an example, this paper proposes a hierarchical fault propagation analysis method, analyzes and determines the edge betweenness ranking model and the importance degree of each sub-system.

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

FCM과 TAM recall 과정을 이용한 고장진단 (Fault diagnosis using FCM and TAM recall process)

  • 이기상;박태홍;정원석;최낙원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.233-238
    • /
    • 1993
  • In this paper, two diagnosis algorithms using the simple fuzzy, cognitive map (FCM) that is an useful qualitative model are proposed. The first basic algorithm is considered as a simple transition of Shiozaki's signed directed graph approach to FCM framework. And the second one is an extended version of the basic algorithm. In the extension, three important concepts, modified temporal associative memory (TAM) recall, temporal pattern matching algorithm and hierarchical decomposition are adopted. As the resultant diagnosis scheme takes short computation time, it can be used for on-line fault diagnosis of large scale and complex processes that conventional diagnosis methods cannot be applied. The diagnosis system can be trained by the basic algorithm and generates FCM model for every experienced process fault. In on-line application, the self-generated fault model FCM generates predicted pattern sequences, which are compared with observed pattern sequences to declare the origin of fault. In practical case, observed pattern sequences depend on transport time. So if predicted pattern sequences are different from observed ones, the time weighted FCM with transport delay can be used to generate predicted ones. The fault diagnosis procedure can be completed during the actual propagation since pattern sequences of tvo different faults do not coincide in general.

  • PDF