• 제목/요약/키워드: hiding access policy

검색결과 3건 처리시간 0.016초

Sharing and Privacy in PHRs: Efficient Policy Hiding and Update Attribute-based Encryption

  • Liu, Zhenhua;Ji, Jiaqi;Yin, Fangfang;Wang, Baocang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.323-342
    • /
    • 2021
  • Personal health records (PHRs) is an electronic medical system that enables patients to acquire, manage and share their health data. Nevertheless, data confidentiality and user privacy in PHRs have not been handled completely. As a fine-grained access control over health data, ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data confidentiality. However, existing CP-ABE solutions for PHRs are facing some new challenges in access control, such as policy privacy disclosure and dynamic policy update. In terms of addressing these problems, we propose a privacy protection and dynamic share system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible access control. In the system, attribute information of access policy is fully hidden by attribute bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively secure under standard model. Finally, the performance comparisons and simulation results demonstrate that PPADS is suitable for PHRs.

Improving Security in Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Yin, Hongjian;Zhang, Leyou;Cui, Yilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2768-2780
    • /
    • 2019
  • Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.

프라이버시 보호 상황인식 시스템 개발을 위한 쌍방향 P3P 방법론 (A Mutual P3P Methodology for Privacy Preserving Context-Aware Systems Development)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제18권1호
    • /
    • pp.145-162
    • /
    • 2008
  • One of the big concerns in e-society is privacy issue. In special, in developing robust ubiquitous smart space and corresponding services, user profile and preference are collected by the service providers. Privacy issue would be more critical in context-aware services simply because most of the context data themselves are private information: user's current location, current schedule, friends nearby and even her/his health data. To realize the potential of ubiquitous smart space, the systems embedded in the space should corporate personal privacy preferences. When the users invoke a set of services, they are asked to allow the service providers or smart space to make use of personal information which is related to privacy concerns. For this reason, the users unhappily provide the personal information or even deny to get served. On the other side, service provider needs personal information as rich as possible with minimal personal information to discern royal and trustworthy customers and those who are not. It would be desirable to enlarge the allowable personal information complying with the service provider's request, whereas minimizing service provider's requiring personal information which is not allowed to be submitted and user's submitting information which is of no value to the service provider. In special, if any personal information required by the service provider is not allowed, service will not be provided to the user. P3P (Platform for Privacy Preferences) has been regarded as one of the promising alternatives to preserve the personal information in the course of electronic transactions. However, P3P mainly focuses on preserving the buyers' personal information. From time to time, the service provider's business data should be protected from the unintended usage from the buyers. Moreover, even though the user's privacy preference could depend on the context happened to the user, legacy P3P does not handle the contextual change of privacy preferences. Hence, the purpose of this paper is to propose a mutual P3P-based negotiation mechanism. To do so, service provider's privacy concern is considered as well as the users'. User's privacy policy on the service provider's information also should be informed to the service providers before the service begins. Second, privacy policy is contextually designed according to the user's current context because the nomadic user's privacy concern structure may be altered contextually. Hence, the methodology includes mutual privacy policy and personalization. Overall framework of the mechanism and new code of ethics is described in section 2. Pervasive platform for mutual P3P considers user type and context field, which involves current activity, location, social context, objects nearby and physical environments. Our mutual P3P includes the privacy preference not only for the buyers but also the sellers, that is, service providers. Negotiation methodology for mutual P3P is proposed in section 3. Based on the fact that privacy concern occurs when there are needs for information access and at the same time those for information hiding. Our mechanism was implemented based on an actual shopping mall to increase the feasibility of the idea proposed in this paper. A shopping service is assumed as a context-aware service, and data groups for the service are enumerated. The privacy policy for each data group is represented as APPEL format. To examine the performance of the example service, in section 4, simulation approach is adopted in this paper. For the simulation, five data elements are considered: $\cdot$ UserID $\cdot$ User preference $\cdot$ Phone number $\cdot$ Home address $\cdot$ Product information $\cdot$ Service profile. For the negotiation, reputation is selected as a strategic value. Then the following cases are compared: $\cdot$ Legacy P3P is considered $\cdot$ Mutual P3P is considered without strategic value $\cdot$ Mutual P3P is considered with strategic value. The simulation results show that mutual P3P outperforms legacy P3P. Moreover, we could conclude that when mutual P3P is considered with strategic value, performance was better than that of mutual P3P is considered without strategic value in terms of service safety.