• Title/Summary/Keyword: heuristic search method

Search Result 286, Processing Time 0.037 seconds

HS Optimization Implementation Based on Tuning without Maximum Number of Iterations (최대 반복 횟수 없이 튜닝에 기반을 둔 HS 최적화 구현)

  • Lee, Tae-bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.131-136
    • /
    • 2018
  • Harmony search (HS) is a relatively recently developed meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments' pitches searching for a perfect state of harmony. In the conventional HS algorithm, it is necessary to determine the maximum number of iterations with some algorithm parameters. However, there is no criterion for determining the number of iterations, which is a very difficult problem. To solve this problem, a new method is proposed to perform the algorithm without setting the maximum number of iterations in this paper. The new method allows the algorithm to be performed until the desired tuning is achieved. To do this, a new variable bandwidth is introduced. In addition, the types and probability of harmonies composed of variables is analyzed to help to decide the value of HMCR. The performance of the proposed method is investigated and compared with classical HS. The experiments conducted show that the new method generally outperformed conventional HS when applied to seven benchmark problems.

Solving Facility Rearrangement Problem Using a Genetic Algorithm and a Heuristic Local Search

  • Suzuki, Atsushi;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.170-175
    • /
    • 2012
  • In this paper, a procedure using a genetic algorithm (GA) and a heuristic local search (HLS) is proposed for solving facility rearrangement problem (FRP). FRP is a decision problem for stopping/running of facilities and integration of stopped facilities to running facilities to maximize the production capacity of running facilities under the cost constraint. FRP is formulated as an integer programming model for maximizing the total production capacity under the constraint of the total facility operating cost. In the cases of 90 percent of cost constraint and more than 20 facilities, the previous solving method was not effective. To find effective alternatives, this solving procedure using a GA and a HLS is developed. Stopping/running of facilities are searched by GA. The shifting the production operation of stopped facilities into running facilities is searched by HLS, and this local search is executed for one individual in this GA procedure. The effectiveness of the proposed procedure using a GA and HLS is demonstrated by numerical experiment.

Optimal Cutting Plan for 1D Parts Using Genetic Algorithm and Heuristics (유전자알고리즘 및 경험법칙을 이용한 1차원 부재의 최적 절단계획)

  • Cho, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.554-558
    • /
    • 2001
  • In this study, a hybrid method is used to search the pseudo-optimal solution for the I-dimentional nesting problem. This method is composed of the genetic algorithm for the global search and a simple heuristic one for the local search near the pseudo optimal solution. Several simulation results show that the hybrid method gives very satisfactory results.

  • PDF

A Study on the Performance Improvement of Harmony Search Optimization Algorithm (HS 최적화 알고리즘 성능 향상에 관한 연구)

  • Lee, Tae-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.403-408
    • /
    • 2021
  • Harmony Search(HS) algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and has been successfully applied to solve different optimization problems. In order to further improve the performance of HS, this paper proposes a new method which is called Fast Harmony Search(FSH) algorithm. For the purpose, this paper suggest a method to unify two independent improvisation processes by newly defining the boundary value of a object variable using HM. As the result, the process time of the algorithm is shorten and explicit decision of bandwidth is no more needed. Furthermore, exploitative power of random selection is improved. The numerical results reveal that the proposed algorithm can find better solutions and is faster when compared to the conventional HS.

Nesting Problem for Two Dimensional Irregular Shapes using Heuristic (휴리스틱을 이용한 2차원 임의형상 부재 배치 문제)

  • Jeong, Sung-Kyo;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • A new search procedure, VLT(Vertex Line Tracing) heuristic, for two dimensional irregular shapes nesting problem was suggested in this study. The VLT heuristic was suggested to the nesting problem to overcome disadvantages of the existing NFP(No-Fit-Polygon) method. This VLT heuristic was compared with the results of the existing benchmark problems suggested by Albano, Hopper, and Burke. The results of the VLT heuristic give efficient solutions in the point of the scrap ratio and computation time. A computer program, NestLogic, using C++ for VLT heuristic was also developed for this nesting problem.

Cost Relaxation Method to Escape from a Local Optimum of the Traveling Salesman Problem (외판원문제에서 국지해를 탈출하기 위한 비용완화법)

  • Kwon, Sang-Ho;Kim, Sung-Min;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.120-129
    • /
    • 2004
  • This paper provides a simple but effective method, cost relaxation to escape from a local optimum of the traveling salesman problem. We would find a better solution if we repeat a local search heuristic at a different initial solution. To find a different initial solution, we use the cost relaxation method relaxing the cost of arcs. We used the Lin-Kernighan algorithm as a local search heuristic. In experimental result, we tested large instances, 30 random instances and 34 real world instances. In real-world instances, we found average 0.17% better above the optimum solution than the Concorde known as the chained Lin-Kernighan. In clustered random instances, we found average 0.9% better above the optimum solution than the Concorde.

The Bisection Seed Detection Heuristic for Solving the Capacitated Vehicle Routing Problem (한정 용량 차량 경로 탐색 문제에서 이분 시드 검출 법에 의한 발견적 해법)

  • Ko, Jun-Taek;Yu, Young-Hoon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The Capacitated Vehicle Routing Problem (CVRP) is the problem that the vehicles stationed at central depot are to be optimally routed to supply customers with demands, satisfying vehicle capacity constraints. The CVRP is the NP-hard as it is a natural generalization of the Traveling Salesman Problem (TSP). In this article, we propose the heuristic algorithm, called the bisection seed detection method, to solve the CVRP. The algorithm is composed of 3-phases. In the first phase, we work out the initial cluster using the improved sweep algorithm. In the next phase, we choose a seed node in each initial cluster by using the bisection seed detection method, and we compose the rout with the nearest node from each seed. At this phase, we compute the regret value to decide the list of priorities for the node assignment. In the final phase, we improve the route result by using the tabu search and exchange algorithm. We compared our heuristic with different heuristics such as the Clark-Wright heuristic and the genetic algorithm. The result of proposed heuristic show that our algorithm can get the nearest optimal value within the shortest execution time comparatively.

  • PDF

Improving Diversity of Keyword Search on Graph-structured Data by Controlling Similarity of Content Nodes (콘텐트 노드의 유사성 제어를 통한 그래프 구조 데이터 검색의 다양성 향상)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A heuristic search, respectively. We also suggest an improvement on the A search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.

A Tabu Search Method for K-anonymity in database privacy protection

  • Run, Cui;Kim, Hyoung-Joong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.990-992
    • /
    • 2011
  • In this paper, we introduce a new Tabu method to get K-anonymity character in database information privacy protection. We use the conception of lattice to form the solution space for K-anonymity Character and search the solution area in this solution space to achieve the best or best approach modification solution for the information in the database. We then compared the Tabu method with other traditional heuristic method and our method show a better solution in most of the cases.