• Title/Summary/Keyword: heterozygosity

Search Result 386, Processing Time 0.027 seconds

Estimation of the Cumulative Power of Discrimination in Haimen Chicken Populations with Ten Microsatellite Markers

  • Olowofeso, O.;Wang, J.Y.;Shen, J.C.;Chen, K.W.;Sheng, H.W.;Zhang, P.;Wu, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1066-1070
    • /
    • 2005
  • To estimate the cumulative power of discrimination (CPD) existing within Haimen chicken populations in China, we isolated a total of 252 genomic DNAs from four chicken populations (Rugao, Jiangchun, Wan-Nan and Cshiqishi) through a saturated salt procedure. All the genomic DNAs were used in a polymerase chain reaction (PCR) with ten microsatellite markers. Amplified PCR-products with the selected markers were separated on a 12% polyacrylamide gel with pBR322DNA/MspI used as internal standard marker. Genetic diversity indices including mean allele number among loci, unbiased heterozygosity ($h_i$) within locus, effective number of alleles ($N_e$) and polymorphism information content (PIC) as well as the unbiased average heterozygosity (H) among loci in the populations were calculated using the generated allele frequencies by each marker. The mean allele number for all loci ranged between 4.00${\pm}$0.33 (Rugao) to 4.90${\pm}$0.48 (Cshiqishi) and across populations for all loci was 4.60${\pm}$0.20, while (H) ranged from 0.65${\pm}$0.03 (Rugao) to 0.69${\pm}$0.03 (Jiangchun) among loci and across populations, (H) was 0.67${\pm}$0.01. The generated unbiased average heterozygosity among loci in each population was integrated to the global formula of CPD and the result demonstrated that the CPD within the four Haimen chicken populations was 98.75%.

Forensic Characterization of Four New Bovine Tri-nucleotide Microsatellite Markers in Korean Cattle (Hanwoo)

  • Sim, Yong Teak;Na, Jong Gil;Lee, Chul-Sang
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • We identified four new bovine tri-nucleotide microsatellite loci and analyzed their sequence structures and genetic parameters in 105 randomly selected Korean cattle (Hanwoo). Allele numbers of the loci B17S0808, B15S6253, B8S7996, and B17S4998 were 10, 11, 12, and 29, respectively. These alleles contained a simple or compound repeat sequences with some variations. Allele distributions of all these loci were in Hardy-Weinberg equilibrium (P > 0.05). Observed heterozygosity and expected heterozygosity ranged from 0.54 (B15S6253) to 0.92 (B17S4998) and from 0.599 (B15S6253) to 0.968 (B17S4998), respectively, and two measures of heterozygosity at each locus were highly correlated. Polymorphism information content (PIC) for these 4 loci ranged from 0.551 (B15S6253) to 0.932 (B17S4998), which means that all these loci are highly informative (PIC > 0.5). Other genetic parameters, power of discrimination (PD) and probability of exclusion (PE) ranged from 0.783 (B15S6253) to 0.984 (B17S4998) and from 0.210 (B15S6253) to 0.782 (B17S4998), respectively. Their combined PD and PE values were 0.9999968 and 0.98005176, respectively. Capillary electrophoresis revealed that average peak height ratio for a stutter was 13.89% at B17S0808, 26.67% at B15S6253, 9.09% at B8S7996, and 43.75% at B17S4998. Although the degree of genetic variability of the locus B15S6253 was relatively low among these four microsatellite markers, their favorable parameters and low peak height ratios for stutters indicate that these four new tri-nucleotide microsatellite loci could be useful multiplex PCR markers for the forensic and population genetic studies in cattle including Korean native breed.

Loss of Heterozygosity (LOH) on 17th and 18th Chromosome from Colorectal Carcinoma (대장암에서 17, 18번 염색체의 이형접합성 소실)

  • Lee, Jae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Colorectal carcinoma is occurred frequently to Korean and so ranked the fourth from various cancers. Due to western dietary life, this cancer has been increased continually. Therefore, the study will be needed to find a candidate gene involved in the development and progression of colorectal carcinoma and to diagnose and treatment helpfully. The striking feature from cancer suppressor genes is known for LOH (loss of heterozygosity), which is the method to find allele genetic loss or mutation of cancer cell. The purpose of this study was designed to find a carcinogenic gene from colon cancer using microsatellite marker on 17th and 18th chromosome from 30 subjects. The LOH was investigated in order of D18S59 57% (17/30), TP53CA 50% (15/30), D18S68 47% (14/30), D18S69 43% (13/30). The genetic mutation depends on loci of colorectal carcinoma was shown higher with 2.44 from colon cancer than with 1.25 from right colorectal carcinoma (p<0.032). The genetic mutation with lymph nodes was investigated higher with 2.69 at mutated group than with 1.14 at non-mutated group (p<0.003). At genetic mutated pattern depends on disease stage, there was higher significant difference at III-IV stage 2.50 than that of I-II stage 1.17, respectively (p=0.015). There was no difference at comparison between histological classification and serological CEA increase. The loss on 18q21 found in this study is highly recurrence loci and was observed 43% for Korean with high recurrence. Therefore, LOH is a very useful tool to detect 18q21 loci in clinical application, prior to the treatment of colorectal carcinoma. After the operation of colorectol carcinoma, the efficient application using LOH at operated part tissue which is designed to protect the recurrence as well as its cure will be needed.

  • PDF

Genomic diversity and admixture patterns among six Chinese indigenous cattle breeds in Yunnan

  • Li, Rong;Li, Chunqing;Chen, Hongyu;Liu, Xuehong;Xiao, Heng;Chen, Shanyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1069-1076
    • /
    • 2019
  • Objective: Yunnan is not only a frontier zone that connects China with South and Southeast Asia, but also represents an admixture zone between taurine (Bos taurus) and zebu (Bos indicus) cattle. The purpose of this study is to understand the level of genomic diversity and the extent of admixture in each Yunnan native cattle breed. Methods: All 120 individuals were genotyped using Illumina BovineHD BeadChip (777,962 single nucleotide polymorphisms [SNPs]). Quality control and genomic diversity indexes were calculated using PLINK software. The principal component analysis (PCA) was assessed using SMARTPCA program implemented in EIGENSOFT software. The ADMIXTURE software was used to reveal admixture patterns among breeds. Results: A total of 604,630 SNPs was obtained after quality control procedures. Among six breeds, the highest level of mean heterozygosity was found in Zhaotong cattle from Northeastern Yunnan, whereas the lowest level of heterozygosity was detected in Dehong humped cattle from Western Yunnan. The PCA based on a pruned dataset of 233,788 SNPs clearly separated Dehong humped cattle (supposed to be a pure zebu breed) from other five breeds. The admixture analysis further revealed two clusters (K = 2 with the lowest cross validation error), corresponding to taurine and zebu cattle lineages. All six breeds except for Dehong humped cattle showed different degrees of admixture between taurine and zebu cattle. As expected, Dehong humped cattle showed no signature of taurine cattle influence. Conclusion: Overall, considerable genomic diversity was found in six Yunnan native cattle breeds except for Dehong humped cattle from Western Yunnan. Dehong humped cattle is a pure zebu breed, while other five breeds had admixed origins with different extents of admixture between taurine and zebu cattle. Such admixture by crossbreeding between zebu and taurine cattle facilitated the spread of zebu cattle from tropical and subtropical regions to other highland regions in Yunnan.

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.

Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS

  • Dong Leng;Liangpeng Ge;Jing Sun
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1508-1516
    • /
    • 2023
  • Objective: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. Methods: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. Results: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. Conclusion: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

Analysis of Microsatellite DNA Polymorphism for Parentage Testing in Dog Breeds (개의 친자감정을 위한 Microsatellite DNA 다형성 분석)

  • Cho, G. J.;Cho, B. W.;Kim, S. K.;Lee, K. W.;Kim, Y. K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-198
    • /
    • 2003
  • This study was carried out to investigate a usefulness of the microsatellite DNA markers for individual identification and parentage verification in three dog breeds. A total of 59 random dog (31 Chiwawa, 20 Poongsan, 8 Labrador Retriever) samples were genotyped by using 14 markers (Chiwawa dog), 16 markers (Poongsan dog), and 12 markers (Labrador Retriever dog) among the 17 international standard markers (PEZ1, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 20, 21, FHC2010, FHC2054 and FHC2079), respectively. The number of alleles per locus varied from 4 to 14 with a mean value of 6.07 in Chiwawa dog, 2 to 9 with a mean of 4.75 in Poongsan dog, and 3 to 5 with a mean of 4.00 in Labrador Retriever dog. Observed heterozygosity was ranged 0.419${\sim}$0.968 (mean 0.755), 0.300${\sim}$0.950 (mean 0.597) and 0.125${\sim}$0.750 (mean 0.604), and expected heterozygosity was ranged 0.432${\sim}$0.883 (mean 0.711), 0.262${\sim}$0.817 (mean 0.559) and 0.425${\sim}$0.808 (mean 0.660) in these three dog breeds. PIC value was ranged 0.397${\sim}$0.856 (mean 0.659), 0.222${\sim}$0.772 (mean 0.503) and 0.354${\sim}$0.717 (mean 0.563) in these three dog breeds. Of the 17 markers, PEZ1, PEZ3, PEZ6, PEZ10, PEZ12 loci, PEZ1, PEZ6, PEZ13 loci, and PEZ8, PEZ12 loci have relatively high PIC value (>0.7) in Chiwawa dog, Poongsan dog and Labrador Retriever dog, respectively. The exclusion probability was ranged 0.240${\sim}$0.741, 0.111${\sim}$0.616, and 0.198${\sim}$0.529, and the combination of microsatellite loci was 0.9999, 0.9991, and 0.9968 in Chiwawa dog, Poongsan dog and Labrador Retriever dog, respectively. These results can give basic information for developing parentage verification and individual identification system in these three dog breeds.

Genetic Relationship and Characteristics Using Microsatellite DNA Loci in Horse Breeds. (Microsatellite DNA를 이용한 말 집단의 유전적 특성 및 유연 관계)

  • Cho, Gil-Jae
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.699-705
    • /
    • 2007
  • The present study was conducted to investigate the genetic characteristic and to establish the parentage verification system of the Korean native horse(KNH). A total number of 192 horses from six horse breeds including the KNH were genotyped using 17 microsatellite loci. This method consisted of multiplexing PCR procedure. The number of alleles per locus varied from 5 to 10 with a mean value of 7.35 in KNH. The expected heterozygosity and observed heterozygosity were ranged from 0.387 to 0.841(mean 0.702) and from 0.429 to 0.905(mean 0.703), respectively. The total exclusion probability of 17 microsatellite loci was 0.9999. Of the 17 markers, AHT4, AHT5, CA425, HMS2, HMS3, HTG10, LEX3 and VHL20 marker have relatively high PIC value(>0.7). This study found that there were specific alleles, P allele at AHT5, Q allele and R allele at ASB23, H allele at CA425, S allele at HMS3, J allele at HTG10 and J allele at LEX3 marker in KNH when compared with other horse populations. Also, the results showed two distinct clusters: the Korean native horse cluster(Korean native horse, Mongolian horse), and the European cluster(Jeju racing horse, Thoroughbred horse). These results present basic information for detecting the genetic markers of the KNH, and has high potential for parentage verification and individual identification of the KNH.

Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency

  • Lia, Y.H.;Chu, H.P.;Jiang, Y.N.;Lin, C.Y.;Li, S.H.;Li, K.T.;Weng, G.J.;Cheng, C.C.;Lu, D.J.;Ju, Y.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.616-627
    • /
    • 2014
  • The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index ($F_{ST}$) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu's inbred populations. Inbreeding values ($F_{IS}$) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity ($H_E$) or $F_{ST}$, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, $F_{ST}$ and D-scores were used. Only 6 to 8 markers ranking $H_E$, $F_{ST}$ or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, $F_{ST}$ and allelic number of close lineage populations.

Comparison for Genetic Diversity between Korean Native Commercial Chicken Brand Groups using Microsatellite Markers (Microsatellite Marker를 활용한 토종닭 브랜드 집단 간의 유전적 다양성 분석)

  • Lee, Hak-Kyo;Oh, Jae-Don;Park, Chan-Ho;Lee, Kun-Woo;Lee, Jun-Heon;Jeon, Gwang-Joo;Kong, Hong-Sik
    • Korean Journal of Poultry Science
    • /
    • v.37 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • To estimate the genetic characteristics within two brands of Korean native commercial chicken, we used a total of 302 genomic DNAs from two groups (Woorichicken: 152, Hanhyup3chicken: 150). Sizes of 10 microsatellite markers were decided using GeneMapper Software (v.4.0) after analyzing ABI 3130. Genetic diversity indices including expected heterozygosity (Ex H), observed heterozygosity (Ob H) and polymorphism information content (PIC). Frequencies of microsatellites markers were used to estimate heterozygosities and genetic distances. LEI0073 showed the highest value in all genetic diversity (Ex H, Ob H and PIC). On the other hand, MCW322 showed the lowest value in all genetic diversity. The calculated genetic distance of the two brand groups is 0.199 (standard genetic distance) and 0.132 (DA distance). Genetic distances of the two groups were relatively close to each other. Each individual is ramified to two brand groups in phylogenetic dendrogram.