• Title/Summary/Keyword: heterologous gene expression

Search Result 180, Processing Time 0.022 seconds

Heterologous Expression of Hybrid Type II Polyketide Synthase System in Streptomyces Species

  • Kim, Chang-Young;Park, Hyun-Joo;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.819-822
    • /
    • 2003
  • Polyketides are an extensive class of secondary metabolites with diverse molecular structures and biological activities. A plasmid-based minimal polyketide synthase (PKS) expression cassette was constructed using a subset of actinorhodin (act) biosynthetic genes (actI-orfl, actI-orf2, actI-orf3, actIII, actⅦ, and actIV) from Streptomyces coelicolor, which specify the construction of an orange-fluorescent anthraquinone product aloesaponarin II, a type II polyketide compound derived from one acetyl coenzyme A and 7 malonyl coenzyme A extender units. This system was designed as an indicator pathway in S. parvulus to generate a hybrid type II polyketide compound via gene-specific replacement. The act ${\beta}-ketoacyl$ synthase unit (actI-orfl and actI-orf2) in the expression cassette was specifically replaced with oxytetracycline ${\beta}-ketoacyl$ synthase otcY-orfl and otcY-orf2). This plasmid-based hybrid PKS cassette generated a novel orange-fluorescent compound structurally different from aloesaponarin II in both S. lividans and S. parvulus. In addition, several additional distinctive blue-fluorescent compounds were detected, when this hybrid PKS cassette was expressed in S. coelicolor B78 (actI-orf2 mutant), implying that the expression of plasmid-based hybrid PKS cassette in Streptomyces species should be an efficient way of generating hybrid type II polyketide compounds.

Molecular Cloning and Heterologous Expression of an Acid-Stable Endoxylanase Gene from Penicillium oxalicum in Trichoderma reesei

  • Wang, Juan;Mai, Guoqin;Liu, Gang;Yu, Shaowen
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.251-259
    • /
    • 2013
  • An endoxylanase gene (PoxynA) that belongs to the glycoside hydrolase (GH) family 11 was cloned from a xylanolytic strain, Penicillium oxalicum B3-11(2). PoxynA was overexpressed in Trichoderma reesei QM9414 by using a constitutive strong promoter of the encoding pyruvate decarboxylase (pdc). The high extracellular xylanase activities in the fermentation liquid of the transformants were maintained 29~35-fold higher compared with the wild strain. The recombinant POXYNA was purified to homogeneity, and its characters were analyzed. Its optimal temperature and pH value were $50^{\circ}C$ and 5.0, respectively. The enzyme was stable at a pH range of 2.0 to 7.0. Using beechwood as the substrate, POXYNA had a high specific activity of $1,856{\pm}53.5$ IU/mg. In the presence of metal ions, such as $Cu^{2+}$, and $Mg^{2+}$, the activity of the enzyme increased. However, strong inhibition of the enzyme activity was observed in the presence of $Mn^{2+}$ and $Fe^{2+}$. The recombinant POXYNA hydrolyzed birchwood xylan, beechwood xylan, and oat spelt xylan to produce short-chain xylooligosaccharides, xylopentaose, xylotriose, and xylobiose as the main products. This is the first report on the expression properties of a recombinant endoxylanase gene from Penicillium oxalicum. The properties of this endoxylanase make it promising for applications in the food and feed industries.

Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process

  • Ding, Feng;Zhang, Shuwei;Chen, Houbin;Peng, Hongxiang;Lu, Jiang;He, Xinhua;Pan, Jiechun
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1259-1267
    • /
    • 2018
  • Litchi (Litchi chinensis Sonn.) is an important subtropical fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. Previous studies indicate that low-temperature is a key factor in litchi floral induction. In order to reveal the genetic and molecular mechanisms underlying the reproductive process in litchi, we had analyzed the transcriptome of buds before and after low-temperature induction using RNA-seq technology. A key flower bud differentiation associated gene, a homologue of FLORICAULA/LEAFY, was identified and named LcLFY (GenBank Accession No. KF008435). The cDNA sequence of LcLFY encodes a putative protein of 388 amino acids. To gain insight into the role of LcLFY, the temporal expression level of this gene was measured by real-time RT-PCR. LcLFY was highly expressed in flower buds and its expression correlated with the floral developmental stage. Heterologous expression of LcLFY in transgenic tobacco plants induced precocious flowering. Meantime, we investigated the sub-cellular localization of LcLFY. The LcLFY-Green fluorescent protein (GFP) fusion protein was found in the nucleus. The results suggest that LcLFY plays a pivotal role as a transcription factor in controlling the transition to flowering and in the development of floral organs in litchi.

Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis

  • Khanom, Sanjida;Jang, Jinhoon;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.645-653
    • /
    • 2019
  • Background: Cytochrome P450 enzymes catalyze a wide range of reactions in plant metabolism. Besides their physiological functions on primary and secondary metabolites, P450s are also involved in herbicide detoxification via hydroxylation or dealkylation. Ginseng as a perennial plant offers more sustainable solutions to herbicide resistance. Methods: Tissue-specific gene expression and differentially modulated transcripts were monitored by quantitative real-time polymerase chain reaction. As a tool to evaluate the function of PgCYP736A12, the 35S promoter was used to overexpress the gene in Arabidopsis. Protein localization was visualized using confocal microscopy by tagging the fluorescent protein. Tolerance to herbicides was analyzed by growing seeds and seedlings on Murashige and Skoog medium containing chlorotoluron. Results: The expression of PgCYP736A12 was three-fold more in leaves compared with other tissues from two-year-old ginseng plants. Transcript levels were similarly upregulated by treatment with abscisic acid, hydrogen peroxide, and NaCl, the highest being with salicylic acid. Jasmonic acid treatment did not alter the mRNA levels of PgCYP736A12. Transgenic lines displayed slightly reduced plant height and were able to tolerate the herbicide chlorotoluron. Reduced stem elongation might be correlated with increased expression of genes involved in bioconversion of gibberellin to inactive forms. PgCYP736A12 protein localized to the cytoplasm and nucleus. Conclusion: PgCYP736A12 does not respond to the well-known secondary metabolite elicitor jasmonic acid, which suggests that it may not function in ginsenoside biosynthesis. Heterologous overexpression of PgCYP736A12 reveals that this gene is actually involved in herbicide metabolism.

Heterologous Expression of Human Ferritin H-chain and L-chain Genes in Saccharomyces cerevisiae (재조합 효모를 이용한 사람 H-Chain 교 L-Chain Ferritin의 생산)

  • 서향임;전은순;정윤조;김경숙
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • Human ferritin H- and L-chain genes(hfH and hfL) were cloned into the yeast shuttle vector YEp352 with various promoters, and the vectors constructed were used to transform Saccharomyces cerevisiae 2805. Three different promoters fused to hfH and hfL were used: galactokinase 1 (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase(GPD) promoter and alcohol dehydrogenase 1(ADH1 ) promoter. SDS-polyacrylamide gel electrophoresis and Western blotting analyses displayed expression of the introduced hfH and hfL. In the production of both ferritin H and L subunits GAL1 promoter was more effective than GPD promoter or ADH1 promoter. Ferritin H and L subunits produced in S. cerevisiae were spontaneously assembled into its holoproteins as proven on native polyacrylamide gels. Both recombinant H and L-chain ferritins were catalytically active in forming iron core. When the cells were cultured in the medium containing 10 mM ferric citrate, the cell-associated concentration of iron was 174.9 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L and 148.8 $\mu\textrm{g}$ Per gram(dry cell weight) for the recombinant yeast YG-L but was 49.4 $\mu\textrm{g}$ Per gram(dry cell weight) in the wild type, indicating that the iron contents of yeast is improved by heterologous expression of human ferritin H-chain or L-chain genes.

Streptomycetes Inducible Gene Cluster Involved in Aromatic Compound Metabolism

  • Park, Hyeon-Ju;Kim, Eung-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.422-427
    • /
    • 2003
  • Streptomyces setonii (ATCC 39116) is a Gram-positive thermophilic soil actinomycetes capable of degrading single aromatic compounds including phenol and benzoate via ortho-cleavage pathway. we isolated approximately 6.3-kb S. setonii DNA fragment containing a thermophilic catechol 1,2-dioxygenase(C12O) gene. Here we further revealed that the 6.3-kb S. setonii DNA fragment was organized into two putative divergently-transcribed clusters with 6 complete and one incomplete open reading frames (ORFs). The first cluster with 3 ORFs showed significant homologies to previously known benA, benB, and benC, implying a part of benzoate catabolic operon. The second cluster revealed an ortho-cleavage catechol catabolic operon with three translationally-coupled ORFs (catR, catB, catA). Each of these individually-cloned ORFs was expressed in E. coli and identified as a distinct protein band with a theoretical molecular weight in SDS-PAGE. The expression of the cloned S. setonii catechol operon was induced in a heterologous S. lividans by specific single aromatic compounds including catechol, phenol, and 4-chlorophenol. The simitar induction pattern was also observed using a luciferase gene-fused reporter system, implying that S. setonii employs an inducer-specific regulatory mechanism for aromatic compound metabolism.

  • PDF

A New Deoxyhexose Biosynthetic Gene Cluster in Streptomyces griseus ATCC10137: Heterologous Expression of dTDP-D-Glucose 4,6-Dehydratase Gene

  • Kim, Sang Suk;Bang, Jung-Hee;Hyun, Chang-Gu;Kim, Joo-Woo;Han, Jae-Jin;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A novel 6-deoxyhexose biosynthetic gene cluster different from the one for the biosynthesis of streptomycin was isolated from Streptomyces griseus using specifically designed PCR primers to compare the sequence of known dTDP-glucose synthase genes. We cloned a 5.8-kb DNA from Streptomyces griseus ATCC10137, which contained the 4-ketoreductase homologue (grsB), dTDP-glucose synthase (grsD), and dTDP-glucose 4, 6-dehydratase (grsE) genes. Escherichia coli cultures containing plasmid of the PCR product which encoded the grsE region under the controUed T7 promoter were able to catalyze the formation of dTDP-4-keto-6-deoxy-D-glucose from TDP-glucose. The enzyme showed high substrate specificity, being specific to only dTDP-glucose that is known to be incorporated into secondary metabolites such as antibiotics.

  • PDF

Cloning and Functional Characterization of the Germacradienol Synthase (spterp13) from Streptomyces peucetius ATCC 27952

  • Ghimire, Gopal Prasad;Oh, Tae-Jin;Lee, Hei-Chan;Kim, Byung-Gee;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1216-1220
    • /
    • 2008
  • Sequence analysis of the metabolically rich genome of Streptomyces peucetius ATCC 27952 revealed a 2,199 bp sesquiterpene alcohol (germacradienol) synthase-encoding gene from the germacradienol synthase/terpene cyclase gene cluster. The gene was named spterp13, and its putative function is as a germacradienol synthase/terpene cyclase. The amino acid sequence of Spterp13 shows 66% identity with SAV2163 (GeoA) from S. avermitilis MA4680 and 65% identity with SCO6073 from S. coelicolor A3(2), which produces germacradienol/geosmin. The full-length recombinant protein was heterologously expressed as a his-tagged fusion protein in Escherichia coli, purified, and shown to catalyze the $Mg^{2+}$-dependent conversion of farnesyl diphosphate to the germacradienol, which was verified by gas chromatography/mass spectrometry.

Development of a Food-Grade Integration Vector for Heterologous Gene Expression and Protein Secretion in Lactococcus lactis

  • Jeong, Do-Won;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1799-1808
    • /
    • 2006
  • A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF