• Title/Summary/Keyword: heterogeneous materials

Search Result 447, Processing Time 0.022 seconds

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method (부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.

Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review (선택적 레이저 용융법으로 제조된 CoCrFeMnNi계 고엔트로피합금의 미세조직 및 기계적 물성 연구 동향)

  • Park, Jeong Min
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single face-centered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength-ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.

Photocatalysis and Its Applications (광촉매반응과 그 응용)

  • Jung, Kyoung Soo;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.12
    • /
    • pp.682-710
    • /
    • 1997
  • Photocatalysis, which can be applied to get energy economically, to synthesize useful materials, and to remove environmentally harmful materials by transforming solar energy to chemical energy, has many advantages over conventional heterogeneous catalysis. In this review article, both heterogeneous and homogeneous photocatalyses were discussed focusing on the principles of photocatalysis, the modification of the photocatalysts, hydrogen formation by water decomposition, and environmental application of photocatalysis.

  • PDF

A Probabilistic Study on Thickness Effect of Fracture Toughness in Heterogeneous Brittle Materials (불균질 취성재료 파괴인성에 미치는 두께효과의 확률적 연구)

  • Kim, Am-Kee;Koh, Sung-Wi;Jung, Gyoo-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1356-1362
    • /
    • 1996
  • Fracture toughness of heterogeneous brittle materials such as poly crystalline ceramics used to present the size (thickness) effect as well as statistically distributed results. There is belief that both(size effect and scatter) must be associated with each other. However, no generally accepted theory has been established so far. Using statistical approach, a probabilistic modeling for the fracture toughness which describes the thickness effect was attempted in this paper, Weibull distribution of specific fracture energy(SFE)at local areas and Griffith criterion are applied to the model. In addition, the newly developed model was verified with experimental results of alumina.

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials

  • Karami, Behrouz;Karami, Sara
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part I : Preparation and Characterization of Heterogeneous Ion Exchange Membranes (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식탈염공정의 탈염 성능 Part I : 불균질 이온교환막의 제조 및 특성)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • In this study, heterogeneous ion exchange membranes were prepared by mixing cation or anion exchange resins and commercial polyvinylidene fluoride (PVDF) for MCDI process. The mixing ratios of PVDF and ion exchange resins were 1 : 1, 1.4 : 1, 2 : 1, and 3 : 1. We characterized SEM, water content, ion exchange capacity, methanol permeability, and ion conductivity. In the viewpoint of membrane characterization, the blending ratio of 2 : 1 showed the best. For the blending ratio of 2 : 1, heterogeneous cation exchange membrane showed the water content 34%, ion exchange capacity 1.54 meq/g, ion conductivity 0.019 S/cm, and methanol permeability $2.28{\times}10^{-7}{\sim}8.86{\times}10^{-7}cm^2/s$ while In the case of heterogeneous anion exchange membrane, the result showed 37%, 2.18 meq/g, and 0.034 S/cm and $1.46{\times}10^{-7}{\sim}8.66{\times}10^{-7}cm^2/s$.

Evaluation of Mechanical Properties of Glass Substrate Strengthened by Ulatrashort Laser Pulse(1) (극초단파 레이저 강화 유리 기판의 기계적 특성평가(1))

  • Moon Pil Yong;Yoon Duk ki;Lee Kang Taek;Yoo Byung Heon;Cho Sung Hak;Ryu Bong Ki
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.796-801
    • /
    • 2005
  • In order to reduce the weight of glass in architecture, automobile, bottles, displays, a new technique that can strengthen glass was developed using various method. Generally, the strength achieved of glass-ceramics is higher as is 1.he fracture toughness by the formation of a crystalline phase inside glass. In this study, $70SiO_2-20Na_2O-10CaO-10TiO_2$ glasses were irradiated to strengthen by heterogeneous phase using femto-second laser pulse. Laser pulse irradiation of samples was analyzed by DTA, TMA, XRD, nano-indenter and SEM. Samples irradiated by laser had lower value$(3\~4\times10^{-3}Pa)$ of nano indentation which related with mother glass$(8\times10-3Pa)$ than values. Microcracks were occurred around laser irradiation area when femtosecond laser with the repetition rate of 1kHz was used as the light source to induced heterogeneous phase.

Research Trends in Ion Exchange Membrane Processes and Practical Applications (이온교환막 공정 및 응용 연구동향)

  • Kim, Deuk Ju;Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • In this review, we summarized some of membrane processes using the ion exchange membrane typically used in energy applications. Ion exchange membranes are classified according to their functions, formations (e.g. heterogeneous, homogeneous), and polymer type. Furthermore, various methods to prepare cation exchange membranes and anion exchange membranes were discussed in detail and also illustrated through a thorough review of the literature works. There are numerous reports highlighting recent research trends in the ion exchange membrane fabrication, however, in this review we will focus more on discussing the development made in ion exchange membranes and their potential usages in future technologies.

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.