• Title/Summary/Keyword: heterogeneous emerging wireless networks

Search Result 7, Processing Time 0.02 seconds

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Optimal Traffic Control Method by the Cost-analytic Operations Model in Heterogeneous Network Environment (다중 네트워크 환경하에서의 한계 비용 함수에 의한 최적 트래픽 제어 기법)

  • Kim, Jae-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.941-949
    • /
    • 2007
  • By the newly emerging Network access technology, we face the new heterogeneous network environment. The required level of service quality and diversity are now multiplied by the increment of wireless service subscribers. Focusing on the co-existence of multiple access network technology and the complex service needs of users, the wireless service operators should present the stable service quality for every user. The service operators should build the new operation framework which combines the pre-established networks and newly adopted ones. Our problem is finding the optimal heterogeneous network operation framework. We suggest a market-based marginal cost function for evaluating the relative value of resource of each network and develop the whole new heterogeneous network operation framework.

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.

Analysis on the Performance Unfairness Problem of the Heterogeneous Environment with IEEE 802.11b and 802.11e (IEEE 802.11e와 802.11b 표준이 혼재하는 이종환경에서의 불공평 문제 성능 분석)

  • Lim Yujin
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.217-222
    • /
    • 2005
  • The IEEE 802.11 based wireless local area networks are candidates to lead the broadband connectivity in the home and office scenarios. Recently IEEE proposed the 802.11e as a new standard to provide appropriate Quality of Services to a plethora of emerging real-time multimedia and high demanding applications such as high definition movie and audio distribution, video-conference and voice over IP. This paper studies the IEEE 802.11e/IEEE 802.11b interactions focusing on potential unfairness problems that might appear in networks with heterogeneous wireless LAN technologies as well as in the IEEE 802.11e deployment phase.

Key Challenges of Mobility Management and Handover Process In 5G HetNets

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.139-146
    • /
    • 2022
  • Wireless access technologies are emerging to enable high data rates for mobile users and novel applications that encompass both human and machine-type interactions. An essential approach to meet the rising demands on network capacity and offer high coverage for wireless users on upcoming fifth generation (5G) networks is heterogeneous networks (HetNets), which are generated by combining the installation of macro cells with a large number of densely distributed small cells Deployment in 5G architecture has several issues because to the rising complexity of network topology in 5G HetNets with many distinct base station types. Aside from the numerous benefits that dense small cell deployment delivers, it also introduces key mobility management issues such as frequent handover (HO), failures, delays and pingpong HO. This article investigates 5G HetNet mobility management in terms of radio resource control. This article also discusses the key challenges for 5G mobility management.

Simulation model of a multihomed node with WiMAX and WLAN (WiMAX - WLAN 멀티홈드 노드의 시뮬레이션 모델)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • With the rapid progress of wireless technologies today, mobile terminals with multiple access interfaces are emerging. In recent years, WLAN (Wireless Local Area Networks) has become the premier choice for many homes and enterprises. WiMAX (Worldwide Interoperability for Microwave Access) has also emerged as the wireless standard that aims to deliver data over long distances. Therefore, it is important to explore efficient integration methods for delivering multimedia data between heterogeneous wireless networks. In this paper, we developed the simulation models and environments for the mobile multihomed node that has both WiMAX and WLAN interfaces and can move around in both networks by using mobile IP. In order to verify the developed models, we designed and constructed several simulation scenarios, e.g. movement in WiMAX/WLAN, group mobility, MANET, and nested MIP under the various traffic environments such as oneway or bothway UDP packets, FTP traffic, and voice with SIP protocol. The simulation results show that the developed models are useful for mobility studies in various integrated wireless networks.

Design and Implementation of SDN-based 6LBR with QoS Mechanism over Heterogeneous WSN and Internet

  • Lee, Tsung-Han;Chang, Lin-Huang;Cheng, Wei-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1070-1088
    • /
    • 2017
  • Recently, the applications of Internet of Things (IoTs) are growing rapidly. Wireless Sensor Network (WSN) becomes an emerging technology to provide the low power wireless connectivity for IoTs. The IPv6 over low-power wireless personal area networks (6LoWPAN) has been proposed by IETF, which gives each WSN device an IPv6 address to connect with the Internet. The transmission congestion in IoTs could be a problem when a large numbers of sensors are deployed in the field. Therefore, it is important to consider whether the WSN devices have be completely integrated into the Internet with proper quality of service (QoS) requirements. The Software Defined Network (SDN) is a new architecture of network decoupling the data and control planes, and using the logical centralized control to manage the forwarding issues in large-scale networks. In this research, the SDN-based 6LoWPAN Border Router (6LBR) is proposed to integrate the transmission from WSNs to Internet. The proposed SDN-based 6LBR communicating between WSNs and the Internet will bring forward the requirements of end-to-end QoS with bandwidth guarantee. Based on our experimental results, we have observed that the selected 6LoWPAN traffic flows achieve lower packet loss rate in the Internet. Therefore, the 6LoWPAN traffic flows classified by SDN-based 6LBR can be reserved for the required bandwidth in the Internet to meet the QoS requirements.