• Title/Summary/Keyword: heterogeneous catalyst

Search Result 170, Processing Time 0.024 seconds

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Pillared Bentonite Materials as Potential Solid Acid Catalyst for Diethyl Ether Synthesis: A Brief Review

  • Puji Wahyuningsih;Karna Wijaya;Aulia Sukma Hutama;Aldino Javier Saviola;Indra Purnama;Won-Chun Oh;Muhammad Aziz
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.223-234
    • /
    • 2024
  • This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylidine Barbituric acid Derivatives

  • Rathod, Sandip B.;Gambhire, Anil B.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.339-343
    • /
    • 2010
  • A series of $Ce_1Mg_xZr_{1-x}O_2$ (CMZO) mixed metal oxide with different molar ratio were prepared by simple co-precipitation method. The prepared materials were tested for their catalytic activity performance using Knoevenagel condensation of various aromatic aldehydes with barbituric acid under solvent-free condition in microwave. The best catalytic activity was obtained with CMZO (1:0.6:0.4). The synthesized materials were characterized by using XRD, FT-IR, SEM-EDS techniques.

Preparation of the MnO2/Macroporous Carbon for PET Glycolysis

  • Choi, Bong Gill;Yang, MinHo
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.203-207
    • /
    • 2018
  • Plastic pollution is threatening human health and ecosystems, resulting in one of the biggest challenges that humanity has ever faced. Therefore, this study focuses on the preparation of macroporous carbon from biowaste (MC)-supported manganese oxide ($MnO_2$) as an efficient, reusable, and robust catalyst for the recycling of poly(ethylene terephthalate) (PET) waste. As-prepared $MnO_2/MC$ composites have a hierarchical pore network and a large surface area ($376.16m^2/g$) with a narrow size distribution. $MnO_2/MC$ shows a maximum yield (98%) of bis(2-hydroxyethyl)terephthalate (BHET) after glycolysis reaction for 120 min. Furthermore, $MnO_2/MC$ can be reused at least nine times with a negligible decrease in BHET yield. Based on this remarkable catalytic performance, we expect that $MnO_2$-based heterogeneous catalysts have the potential to be introduced into the PET recycling industry.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Chul-Hong;Jeong, Young-Sik;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF

Heat and mass transfer characteristics in steam reforming reactor (수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구)

  • Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF

Microwave-enhanced Acceleration and Energy-efficiency of Biodiesel Synthesis (마이크로파에 의한 바이오디젤 합성의 가속화와 에너지 효율성)

  • Kim, Daeho;Jung, SunShin;Seol, Seung Kwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.108.2-108.2
    • /
    • 2011
  • This presentation shows energy-efficiency of microwave-accelerated esterification of free fatty acid with a heterogeneous catalyst by net microwave power measurement. In the reaction condition of 5wt% sulfated zirconia and 1:20 molar ratio of oil to methanol at $60^{\circ}C$ and atmospheric pressure, more than 90% conversion of the esterification was achieved in 20 minutes by microwave heating, while it took about 130 minutes by conventional heating. Electric energy consumption for the microwave heating in this accelerated esterification was only 67% of estimated minimum heat energy demand because of significantly reduced reaction time.

  • PDF

Water-spliting on ultrathin MgO(100) film on Ag(100)

  • Jo, Seong-Beom;Jo, Jun-Hyeong;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.317-317
    • /
    • 2011
  • Water dissociation on oxide surface has been researched in many fields because of its importance as fundamental phenomenas. MgO(001) is a good model system to understand heterogeneous catalysis, gas sensors, ground-water contaminants, and atmosphere chemistry. Over decades, ultrathin film of MgO on Ag(100) have attracted research activities thanks to its enhanced catalytic property. Correlation of the oxide and the metal, potential screening, charge fluctuation from interface reconstruction makes different energetics of hydroxylation of waters on film. We calculate the water-spliting energetics under the vacuum system.

  • PDF

The Effective Product Method of Biodiesel (바이오디젤의 효과적 생산방법)

  • Lim, Young-Kwan;Shin, Seong-Cheol;Yim, Eui-Soon;Song, Heung-Ok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • In these days, there has been increased focus on global warming and the exhaustion of resources caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a source of renewable energy. Biodiesel fuel produced by the transesterification of vegetable oils and animal fats is expected to be one of the eco-friendly biomass based alternatives to petrodiesel. This article reviews some of the research for effective of biodiesel production.