• Title/Summary/Keyword: heterogeneous access networks

Search Result 167, Processing Time 0.021 seconds

Optimal Vertical Handover Control Policies for Cooperative Wireless Networks

  • Papadaki, Katerina;Friderikos, Vasilis
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.442-450
    • /
    • 2006
  • Inter-operability between heterogeneous radio access technologies (RATs), in the sense of seamless vertical han-dover (VHO) support with common radio resource management (CRRM) functionalities, has recently attracted a significant research attention and has become a prominent issue in standardization fora. In this paper, we formulate the problem of load balancing between cooperative RAT's as a mathematical program and by trading off a pre-defined delay tolerance per request we propose a vertical handover batch processing (VHBP) scheme. To quantify the performance of the proposed VHBP scheme we compare it with a baseline processing scheme, where each VHO request is processed independently under a number of different network scenarios. Numerical investigations reveal significant net benefits of the proposed scheme compared with the baseline, both in terms of achieved load balancing levels but also with regard to the acceptance rate of the VHO requests.

Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA

  • Wang, Xueting;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5203-5217
    • /
    • 2018
  • In order to increase the capacity and improve the spectrum efficiency of wireless communication systems, this paper proposes a rate-based two-sided many-to-one matching game algorithm for energy-harvesting small cells with non-orthogonal multiple access (NOMA) in heterogeneous cellular networks (HCN). First, we use a heuristic clustering based channel allocation algorithm to assign channels to small cells and manage the interference. Then, aiming at addressing the user access problem, this issue is modeled as a many-to-one matching game with the rate as its utility. Finally, considering externality in the matching game, we propose an algorithm that involves swap-matchings to find the optimal matching and to prove its stability. Simulation results show that this algorithm outperforms the comparing algorithm in efficiency and rate, in addition to improving the spectrum efficiency.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

TCP Performance Study in Vertical Handoff across Heterogeneous Wireless Networks (이질적 무선망 사이의 수직적 핸드오프에서의 TCP 성능 분석)

  • Pack Sangheon;Choi Yanghee
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.20-28
    • /
    • 2005
  • TCP(Transmission Control Protocol) is one of the most important Internet protocols, which is widely used in wireless networks as well as wired networks. However, when TCP is deployed for wireless networks, it takes severe performance degradation because TCP was designed for wired network. To overcome this drawback, a number of TCP variants have been proposed in the literature. However, most previous schemes did not consider TCP enhancement over heterogeneous networks. In heterogeneous networks, an mobile node (MN) may move from one access network to another(i.e., vertical handover). In the case of vertical handover, an MN experiences a TCP performance degradation caused by the packet loss and the sudden change of link characteristics between two different access networks. In this work, we investigate the TCP performance degradation occurred in vortical handover across heterogeneous networks. First, we have conducted the measurement study over GPRS-WLAN testbed. In the measurement study. we observed the TCP performance degradation in the case of handover from WLAN to GPRS. In order to study more different TCP behaviors during vertical handover, we performed comprehensive simulations using a network simulator 2(ns-2). Based on measurement and simulation results, we investigated how to improve TCP performance in vertical handover and we concluded that the existing mechanisms cannot be perfect solutions and new mechanisms are strongly required.

An Analytical Hierarchy Process Combined with Game Theory for Interface Selection in 5G Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Rahman, Md. Tashikur;Jang, Yeong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1817-1836
    • /
    • 2020
  • Network convergence is considered as one of the key solutions to the problem of achieving future high-capacity and reliable communications. This approach overcomes the limitations of separate wireless technologies. Efficient interface selection is one of the most important issues in convergence networks. This paper solves the problem faced by users of selecting the most appropriate interface in the heterogeneous radio-access network (RAN) environment. Our proposed scheme combines a hierarchical evaluation of networks and game theory to solve the network-selection problem. Instead, of considering a fixed weight system while ranking the networks, the proposed scheme considers the service requirements, as well as static and dynamic network attributes. The best network is selected for a particular service request. To establish a hierarchy among the network-evaluation criteria for service requests, an analytical hierarchy process (AHP) is used. To determine the optimum network selection, the network hierarchy is combined with game theory. AHP attains the network hierarchy. The weights of different access networks for a service are calculated. It is performed by combining AHP scores considering user's experienced static network attributes and dynamic radio parameters. This paper provides a strategic game. In this game, the network scores of service requests for various RANs and the user's willingness to pay for these services are used to model a network-versus-user game. The Nash equilibria signify those access networks that are chosen by individual user and result maximum payoff. The examples for the interface selection illustrate the effectiveness of the proposed scheme.

Optimal Traffic Control Method by the Cost-analytic Operations Model in Heterogeneous Network Environment (다중 네트워크 환경하에서의 한계 비용 함수에 의한 최적 트래픽 제어 기법)

  • Kim, Jae-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.941-949
    • /
    • 2007
  • By the newly emerging Network access technology, we face the new heterogeneous network environment. The required level of service quality and diversity are now multiplied by the increment of wireless service subscribers. Focusing on the co-existence of multiple access network technology and the complex service needs of users, the wireless service operators should present the stable service quality for every user. The service operators should build the new operation framework which combines the pre-established networks and newly adopted ones. Our problem is finding the optimal heterogeneous network operation framework. We suggest a market-based marginal cost function for evaluating the relative value of resource of each network and develop the whole new heterogeneous network operation framework.

Multi-agent Q-learning based Admission Control Mechanism in Heterogeneous Wireless Networks for Multiple Services

  • Chen, Jiamei;Xu, Yubin;Ma, Lin;Wang, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2376-2394
    • /
    • 2013
  • In order to ensure both of the whole system capacity and users QoS requirements in heterogeneous wireless networks, admission control mechanism should be well designed. In this paper, Multi-agent Q-learning based Admission Control Mechanism (MQACM) is proposed to handle new and handoff call access problems appropriately. MQACM obtains the optimal decision policy by using an improved form of single-agent Q-learning method, Multi-agent Q-learning (MQ) method. MQ method is creatively introduced to solve the admission control problem in heterogeneous wireless networks in this paper. In addition, different priorities are allocated to multiple services aiming to make MQACM perform even well in congested network scenarios. It can be observed from both analysis and simulation results that our proposed method not only outperforms existing schemes with enhanced call blocking probability and handoff dropping probability performance, but also has better network universality and stability than other schemes.

Design and Verification of Flow Mobility Scheme tn the AIMS System (AIMS 시스템에서 플로우 이동성 기법의 설계와 검증)

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Min, Sung-Gi;Lee, Hyo-Beom;Lee, Hyun-Woo;Han, Youn-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.760-770
    • /
    • 2011
  • The existing mobility management schemes do not fully support the next generation network, which is composed of IP-based core network and various access networks. Currently, ETRI has been developing the AIMS (Access Independent Mobility Service) system which satisfies the ITU-T requirements of mobility management in the next generation network. The AIMS system is designed to provide a mobile host with a fast and reliable mobility service among heterogeneous access networks. Recently, many user devices have multiple communication interfaces, e.g., 3G and WLAN, and thus they can make two or more network connections at the same time. In this paper, we design a scheme of flow mobility, i.e., the movement of selected data flows from one access technology to another, to be applied in the AIMS system, and verify the proposed scheme through the NS-3 simulation study. From the simulation results, we can know that the proposed flow mobility scheme can utilize the network resource efficiently in the heterogeneous mobile networks.

An ANP-based Resource Management Scheme in Heterogeneous Wireless Networks Considering Multiple Criteria (다기준 요소를 고려한 ANP 기반 이기종 무선 네트워크 자원관리 방안)

  • Shin, Choong-Yong;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.910-920
    • /
    • 2011
  • In a heterogeneous wireless environment, a variety of Radio Access Technologies (RATs) coexist. Since the number of RATs is anticipated to increase in the near future, it is desirable to have radio and network resources managed in a cooperative manner using the Common Radio Resource Management (CRRM) strategy. In order to make RAT-specific radio resources manageable in CRRM, this paper proposes the Analytical Network Process (ANP) based resource management scheme that efficiently allocates resources among heterogeneous wireless networks. The proposed ANP-based method is flexible enough to be used in any network environment and can consider a multitude of decision factors. In addition, the proposed scheme uses a radio bandwidth model, which properly reflects transmission rates under given channel conditions, as the actual radio resources to be allocated. The model considers the AMC (Adaptive Modulation and Coding) scheme that is widely used in current broadband wireless access technologies, and thus, packet service characteristics, such as response time, can be analyzed. The effectiveness and flexibility of the proposed method are demonstrated by implementing a number of existing factors on heterogeneous networks environment.