• Title/Summary/Keyword: heterogeneous/homogeneous network

Search Result 44, Processing Time 0.024 seconds

Virtual Heterogeneity Provision for Wireless Sensor Networks (무선 센서 네트워크에서 가상 이종성 제공)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1776-1784
    • /
    • 2017
  • There are two types of WSN(wireless sensor networks) in terms of sensor node's capability, that is, homogeneous or heterogeneous WSN. Even though the latter has better performance than the former, it requires some overhead for deploying nodes or clustering the network. In this paper, we propose a new scheme, called VHS(Virtual Heterogenous Sensor-Network), which uses a homogeneous WSN regarding energy in a heterogeneous way. The proposed scheme's performance has been evaluated and compared with other homogeneous schemes by simulation. The results are shown to be better than the other existing homogeneous schemes used in a sample sensor network application.

Performance of Distributed Clustering Protocol in Heterogeneous Wireless Sensor Networks (불균일 무선 센서네트워크에서의 분산 클러스터링 프로토콜 성능)

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.123-126
    • /
    • 2016
  • Energy efficiency in heterogeneous network is considered as one of the main issues when deploying the wireless sensor network. In heterogeneous network, the random distribution of initial energy at each node could lead to an instability of the network. Therefore, a resonable policy must be established in order to maintain the fairness in energy consumption and extend the working time of each node in the network. In this paper, we evaluate the performance of the distributed clustering protocol (DCP) in heterogeneous network on different scenarios. Simulation results are compared with the results of a LEACH protocol in a heterogeneous network. In addition, the performance of system in heterogeneous network are also compared with the homogeneous network to illustrate the effect of imbalance in the initial energy on the life time of each node in the system. The result illustrates that the DCP protocol demonstrates better performance than LEACH protocol in both the heterogeneous and the homogeneous networks.

A study on fast handover scheme for NEMO in heterogeneous network (NEMO 환경에서 이종망간 빠른 핸드오버 제공 방안 연구)

  • Choi, Ji-hyoung;Kim, Dong-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.79-81
    • /
    • 2009
  • NEMO is technique to support mobility of a network, not a node, and ensures session continuity for all the nodes in a Mobile Network. However NEMO basic support protocol causes high handover latency, thus it is incongruent real-time services such as VoIP. One of schemes to reduce handover latency is FNEMO. FNEMO that combines conventional NEMO and FMIPv6, reduces latency during the handover, thus it supports fast handover. In this paper, we compare/analyze handover of FNEMO in heterogeneous/homogeneous network, and propose schemes to reduce handover latency.

  • PDF

A Study on Secure Key Management Technology between Heterogeneous Networks in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경에서 이기종 네트워크간 안전한 키 관리 기술에 관한 연구)

  • Moon, Jong-Sik;Lee, Im-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.504-515
    • /
    • 2008
  • Fast transmission speeds and various wired network services have been combined with the convenience and mobility of wireless services. The combination of wired/wireless technologies is spreading rapidly since it enables the creation of new services and provides new features to both users and service providers. In such wired/wireless integrated services, network integration is very important because such systems are integrated by a linkage between heterogeneous networks and they involve an integration of transmission technologies across networks. In this situation, existing security and communication technologies are unsuitable since the network are integrated with heterogeneous networks. The network may also have several security flaws. In existing homogeneous networks, user authentication and key management between heterogeneous networks are required for these new technologies. The establishment of security technologies for heterogeneous devices is a very important task between homogeneous networks. In this paper, we propose a secure and efficient key management system for a heterogeneous network environment. Our system provides secure communications between heterogeneous network devices.

  • PDF

Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network (Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화)

  • Park Dong-Chul;Kim Woo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.853-858
    • /
    • 2006
  • TMHMM(Tied Mixture Hidden Markov Model) is an important approach to reduce the number of free parameters in speech recognition. However, this model suffers from a degradation in recognition accuracy due to its GPDF (Gaussian Probability Density Function) clustering error. This paper proposes a clustering algorithm, called HCNN(Homogeneous Centroid Neural network), to cluster acoustic feature vectors in TMHMM. Moreover, the HCNN uses the heterogeneous distance measure to allocate more code vectors in the heterogeneous areas where probability densities of different states overlap each other. When applied to Korean digit isolated word recognition, the HCNN reduces the error rate by 9.39% over CNN clustering, and 14.63% over the traditional K-means clustering.

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Improvement of cluster head selection method in L-SEP

  • Jin, Seung Yeon;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.51-58
    • /
    • 2017
  • This paper deals with the improvement of cluster head selection method in L-SEP for heterogeneous nodes among hierarchical routing protocols of wireless sensor network. Wireless sensor networks are classified into homogeneous and heterogeneous network. In heterogeneous network, SEP, L-SEP are mainly used because cluster head selection probability is different depending on node type. But, since protocol based on SEP has different cluster head selection probabilities depending on the node type, clusters that transmit data inefficiently can be formed. to improve this, it is necessary to select the cluster head that minimizes the transmission distance of member node and the cluster head. Therefore, we propose a protocol that improve the cluster head selection method.

Design and Implementation of an Object Migration System Using the Java Language (Java 언어를 이용한 객체이동시스템의 설계 및 구현)

  • Jeon, Byeong-Guk;Lee, Geun-Sang;Choe, Yeong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.49-56
    • /
    • 1999
  • Distributed object Computing, owing to the development of distributed computing, has improved the performance of distributed processing conducted between homogeneous and heterogeneous systems in network. However, it has failed to solve fundamental problems such as network overload and enormous requests demands by servers and clients. In this paper, we propose to design and implement an Object Migration system that uses the java language to tackle the mentioned problems. As the first step of the implementation of the system, we justify the characteristics of t도 mobile object model that keeps codes and states of an object. Implemented Object Migration System would accept objects being migrated to a specific node and support the virtual place in which objects could be executed automatically. Therefore, the Object Migration system we suggest could not only solve problems imposed to traditional distributed computing but also offer transparency of object migration between homogeneous and heterogeneous systems.

  • PDF

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

Semi-distributed dynamic inter-cell interference coordination scheme for interference avoidance in heterogeneous networks

  • Padmaloshani, Palanisamy;Nirmala, Sivaraj
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Inter-cell interference (ICI) is a major problem in heterogeneous networks, such as two-tier femtocell (FC) networks, because it leads to poor cell-edge throughput and system capacity. Dynamic ICI coordination (ICIC) schemes, which do not require prior frequency planning, must be employed for interference avoidance in such networks. In contrast to existing dynamic ICIC schemes that focus on homogeneous network scenarios, we propose a novel semi-distributed dynamic ICIC scheme to mitigate interference in heterogeneous network scenarios. With the goal of maximizing the utility of individual users, two separate algorithms, namely the FC base station (FBS)-level algorithm and FC management system (FMS)-level algorithm, are employed to restrict resource usage by dominant interference-creating cells. The distributed functionality of the FBS-level algorithm and low computational complexity of the FMS-level algorithm are the main advantages of the proposed scheme. Simulation results demonstrate improvement in cell-edge performance with no impact on system capacity or user fairness, which confirms the effectiveness of the proposed scheme compared to static and semi-static ICIC schemes.