• Title/Summary/Keyword: hereditary genes

Search Result 49, Processing Time 0.033 seconds

Genes and SNPs Associated with Non-hereditary and Hereditary Colorectal Cancer

  • Nassiri, Mohammadreza;Kooshyar, Mohammad Mahdi;Roudbar, Zahra;Mahdavi, Morteza;Doosti, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5609-5614
    • /
    • 2013
  • Background: Colorectal cancer is the third most common cancer in both men and women in the world and the second leading cause of cancer-related deaths. The incidence of colorectal cancer has increased in Iran in the past three decades and is now considered as a serious problem for our society. This cancer has two types hereditary and non-hereditary, 80% of cases being the latter. Considering that the relationship between SNPs with diseases is a concern, many researchers believed that they offer valuable markers for identifying genes responsible for susceptibility to common diseases. In some cases, they are direct causes of human disease. One SNP can increase risk of cancer, but when considering the rate of overlap and frequency of DNA repair pathways, it might be expected that SNP alone cannot affect the final result of cancer, although several SNPs together can exert a significant influence. Therefore identification of these SNPs is very important. The most important loci which include mutations are: MLH1, MSH2, PMS2, APC, MUTYH, SMAD7, STK11, $XRCC_3$, $DNMT_1$, MTHFR, Exo1, $XRCC_1$ and VDR. Presence of SNPs in these genes decreases or increases risk of colorectal cancer. Materials and Methods: In this article we reviewed the Genes and SNPs associated with non-hereditary and hereditary of colorectal cancer that recently were reported from candidate gene y, meta-analysis and GWAS studies. Results: As with other cancers, colorectal cancer is associated with SNPs in gene loci. Generally, by exploring SNPs, it is feasible to predict the risk of developing colorectal cancer and thus establishing proper preventive measures. Conclusions: SNPs of genes associated with colorectal cancer can be used as a marker SNP panel as a potential tool for improving cancer diagnosis and treatment planning.

Hereditary Genes and SNPs Associated with Breast Cancer

  • Mahdi, Kooshyar Mohammad;Nassiri, Mohammad Reza;Nasiri, Khadijeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3403-3409
    • /
    • 2013
  • Breast cancer is the most common cancer among women affecting up to one third of tehm during their lifespans. Increased expression of some genes due to polymorphisms increases the risk of breast cancer incidence. Since mutations that are recognized to increase breast cancer risk within families are quite rare, identification of these SNPs is very important. The most important loci which include mutations are; BRCA1, BRCA2, PTEN, ATM, TP53, CHEK2, PPM1D, CDH1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PMS1, PMS2, BRIP1, RAD50, RAD51C, STK11 and BARD1. Presence of SNPs in these genes increases the risk of breast cancer and associated diagnostic markers are among the most reliable for assessing prognosis of breast cancer. In this article we reviewed the hereditary genes of breast cancer and SNPs associated with increasing the risk of breast cancer that were recently were reported from candidate gene, meta-analysis and GWAS studies. SNPs of genes associated with breast cancer can be used as a potential tool for improving cancer diagnosis and treatment planning.

Genetics of Hereditary Peripheral Neuropathies (유전성 말초신경병의 유전학)

  • Cho, Sun-Young;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Hereditary peripheral neuropathies can be categorized as hereditary motor and sensory neuropathies (HMSN), hereditary motor neuropathies (HMN), and hereditary sensory neuropathies (HSN). HMSN, HMN, and HSN are further subdivided into several subtypes. Here, we review the most recent findings in the molecular diagnosis and therapeutic strategy for hereditary peripheral neuropathies. The products of genes associated with hereditary peripheral neuropathy phenotypes are important for neuronal structure maintenance, axonal transport, nerve signal transduction, and functions related to the cellular integrity. Identifying the molecular basis of hereditary peripheral neuropathy and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, as well as the processes involved in the normal development and function of the peripheral nervous system. These advances and the better understanding of the pathogenesis of peripheral neuropathies represent a challenge for the diagnoses and managements of hereditary peripheral neuropathy patients in developing future supportive and curative therapies.

  • PDF

Hereditary cancer and genetic counseling (유전성 암과 유전상담)

  • Jeong, Seung-Yong
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Hereditary syndromes cause approximately 5 to 10% of overall cancer cases. Cancer related with genetic syndromes are found elsewhere, including stomach, breast, colorectum, ovary, brain and so on. Because hereditary cancers are due to germline mutations, these patients have unique clinical features distinct from sporadic cancer. Generally these features include (i) early age-of onset of cancer, (ii) frequent association with synchronous or metachronous tumors, (iii) frequent bilateral involvement in paired organs (iv) frequent association with other site tumors or characteristic clinical manifestation specific to each genetic syndrome. Due to these differences, the management strategy for patients with hereditary cancer is quite different from that for sporadic cancer. Additionally, there are important screening and surveillance implications for family members. Genetic counselling is prerequisite to these families for risk assessment by pedigree analysis, and guidance to clinical or genetic testing. The genes responsible for these syndromes has recently identified, as a result, genetic testing has become important determining factor in clinical decisions.

  • PDF

Hereditary Colorectal Cancer (유전성 대장암)

  • Kim, Duck-Woo
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.24-36
    • /
    • 2010
  • Colorectal cancer is one of the most steeply increasing malignancies in Korea. Among 398,824 new patients recorded by the Korea Central Cancer Registry between 2003 and 2005, 47,915 cases involved colorectal cancers, accounting for 12.0 % of all malignancies. In 2002, total number of colorectal cancer cases had accounted for 11.2 % of all malignancies. Hereditary syndromes are the source of approximately 5% to 15% of overall colorectal cancer cases. Hereditary colorectal cancers are divided into two types: hereditary nonpolyposis colorectal cancer (HNPCC), and cancers associated with hereditary colorectal polyposis, including familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome, juvenile polyposis, and the recently reported hMutYH (MYH)-associated polyposis (MAP). Hereditary colorectal cancers have unique clinical features distinct from sporadic cancer because these are due to germline mutations of the causative genes; (i) early age-of-onset of cancer, (ii) frequent association with synchronous or metachronous tumors, (iii) frequent association with extracolonic manifestations. The management strategy for patients with hereditary colorectal cancer is quite different from that for sporadic cancer. Furthermore, screening, genetic counseling, and surveillance for at-risk familial member are also important. A well-organized registry can plays a central role in the surveillance and management of families affected by hereditary colorectal cancers. Here, we discuss each type of hereditary colorectal cancer, focusing on the clinical and genetic characteristics, management, genetic screening, and surveillance.

Genetics of hereditary nephrotic syndrome: a clinical review

  • Ha, Tae-Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • Advances in podocytology and genetic techniques have expanded our understanding of the pathogenesis of hereditary steroid-resistant nephrotic syndrome (SRNS). In the past 20 years, over 45 genetic mutations have been identified in patients with hereditary SRNS. Genetic mutations on structural and functional molecules in podocytes can lead to serious injury in the podocytes themselves and in adjacent structures, causing sclerotic lesions such as focal segmental glomerulosclerosis or diffuse mesangial sclerosis. This paper provides an update on the current knowledge of podocyte genes involved in the development of hereditary nephrotic syndrome and, thereby, reviews genotype-phenotype correlations to propose an approach for appropriate mutational screening based on clinical aspects.

Distinct mutations in MLH1 and MSH2 genes in Hereditary Non-polyposis Colorectal Cancer (HNPCC) families from China

  • Wei, Wenqian;Liu, Fangqi;Liu, Lei;Li, Zuofeng;Zhang, Xiaoyan;Jiang, Fan;Shi, Qu;Zhou, Xiaoyan;Sheng, Weiqi;Cai, Sanjun;Li, Xuan;Xu, Ye;Nan, Peng
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.317-322
    • /
    • 2011
  • Hereditary non-polyposis Colorectal Cancer (HNPCC) is an autosomal dominant inheritance syndrome. HNPCC is the most common hereditary variant of colorectal cancer (CRC), which accounts for 2-5% CRCs, mainly due to hMLH1 and hMSH2 mutations that impair DNA repair functions. Our study aimed to identify the patterns of hMSH2 and hMLH1 mutations in Chinese HNPCC patients. Ninety-eight unrelated families from China meeting Amsterdam or Bethesda criteria were included in our study. Germline mutations in MLH1 and MSH2 genes, located in the exons and the splice-site junctions, were screened in the 98 probands by direct sequencing. Eleven mutations were found in ten patients (11%), with six in MLH1 (54.5%) and five in MSH2 (45.5%) genes. One patient had mutations in both MLH1 and MSH2 genes. Three novel mutations in MLH1 gene (c.157_160delGAGG, c.2157dupT and c.-64G>T) were found for the first time, and one suspected hotspot in MSH2 (c.1168C>T) was revealed.

Genetic Background of Congenital Hearing Loss (선천성 난청의 유전적 배경)

  • Oh, Seung-Ha;Song, Jae-Jin
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.8-24
    • /
    • 2009
  • Understanding the genetic background of hearing loss is important since almost 50% of the cases of profound hearing loss are caused by genetic factors. Until now, more than 150 causative genes have been identified. In this review, classification of genetic hearing loss (syndromic versus non-syndromic, recessive versus dominant, X-linked and mitochondrial), pitfalls in elucidating causative genes, anatomy of the inner ear, introduction of the most common syndromic hearing loss, introduction of the most common non-syndromic hearing loss-causing genes, mitochondrial and multifactorial hearing losses were discussed. Moreover, clinical approaches to the patients with hereditary hearing loss and genetic counseling were also explained briefly. Finally, future directions of the hereditary hearing loss research in Korean population were presented.

  • PDF

Genetic Basis of Screening of Molecular Markers for Nuclear Polyhedrosis Virus Resistance in Bombyx mori L.

  • Chen, Keping;Yao, Qin;Wang, Yong;Cheng, Jialin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The nuclear polyhedrosis virus (NPV) resistance of silkworm is controlled by a pair of dominant genes on autosome and micro-effect modificator genes on sex chromosome Z and has the phenomenon of patroclinal inheritance. Based on its hereditary characteristics, methods of preparing near isogenic lines and their $F_2$ populations for screening molecular markers were designed.

Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers

  • Rajkumar, Thangarajan;Meenakumari, Balaiah;Mani, Samson;Sridevi, Veluswami;Sundersingh, Shirley
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5211-5217
    • /
    • 2015
  • Background: We earlier used PCR-dHPLC for mutation analysis of BRCA1 and BRCA2. In this article we report application of targeted resequencing of 30 genes involved in hereditary cancers. Materials and Methods: A total of 91 patient samples were analysed using a panel of 30 genes in the Illumina HiScan SQ system. CLCBio was used for mapping reads to the reference sequences as well as for quality-based variant detection. All the deleterious mutations were then reconfirmed using Sanger sequencing. Kaplan Meier analysis was conducted to assess the effect of deleterious mutations on disease free and overall survival. Results: Seventy four of the 91 samples had been run earlier using the PCR-dHPLC and no deleterious mutations had been detected while 17 samples were tested for the first time. A total of 24 deleterious mutations were detected, 11 in BRCA1, 4 in BRCA2, 5 in p53, one each in RAD50, RAD52, ATM and TP53BP1. Some 19 deleterious mutations were seen in patients who had been tested earlier with PCR-dHPLC [19/74] and 5/17 in the samples tested for the first time, Together with our earlier detected 21 deleterious mutations in BRCA1 and BRCA2, we now had 45 mutations in 44 patients. BRCA1c.68_69delAG;p.Glu23ValfsX16 mutation was the most common, seen in 10/44 patients. Kaplan Meier survival analysis did not show any difference in disease free and overall survival in the patients with and without deleterious mutations. Conclusions: The NGS platform is more sensitive and cost effective in detecting mutations in genes involved in hereditary breast and/or ovarian cancers.