• 제목/요약/키워드: hepatoma

검색결과 381건 처리시간 0.033초

DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구 (Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone)

  • 최다연;이재일;정협섭;서한결;우현주;최영현
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.323-331
    • /
    • 2005
  • 남미지역에서 자생하는 Tabebuia avellanedae라는 나무의 수피에서 동정된 quinone계 물질이며, DNA topoisomeras억제제로 알려진 $\beta-lapachone$의 항암작용에 관한 부가적인 자료를 얻기 위하여 인체 간암(HepG2) 및 방광암(T24)세포를 대상으로 조사한 결과 다음과 같은 결과를 얻게 되었다. MTT assay 및 flow cytometry 분석 등의 결과에서, $\beta-lapachone$의 처리에 따라 조사된 두 가지 암세포에서 $\beta-lapachone$처리 농도의존적으로 암세포의 심한 형태적 변형이 동반되면서 암세포의 증식이 억제되었으며, 생존율이 저하되었고 이는 apoptosis유발과 상관성이 있음을 알 수 있었다. $\beta-lapachone$처리에 의한 두 암세포의 증식억제는 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현과는 큰 연관성이 없음을 RT-PCR 및 Western blot analysis를 통하여 확인하였다. 그러나 전사조절인자 Sp-1 및 세포증식 주요조절인자인 PCNA의 단백질 발현은 $\beta-lapachone$처리에 따라 매우 감소되었으며, telomere조절에 중요한 인자들의 선택적 발현 저하 현상도 관찰되었다. 이상의 결과들은 인체 암세포에서 $\beta-lapachone$의 항암작용을 이해하는 중요한 자료가 될 것이며, $\beta-lapachone$과 유사한 화학적 구조 및 성질을 가지는 항암제 후보물질들의 항암기전 비교 및 항암제 개발을 위한 기초 자료로서 응용될 것이다.

세복수초(Adonis multiflora) 추출물의 항암 활성 (Anticancer Effects of the Extracts of Adonis multiflora)

  • 한효상
    • 한국자원식물학회지
    • /
    • 제28권5호
    • /
    • pp.561-567
    • /
    • 2015
  • 본 연구에서는 세복수초 추출물에 대한 항암활성을 평가하고자 간암세포주인 SK-Hep1 세포주에서 MTT를 통한 세포독성을 평가하고 자가포식(autophagy) 형성정도를 확인하였다. 또한, 종양형성능 측정(Xenograft assay)를 통하여 세복수초 추출물에 대한 항암활성평가를 수행하였다. 그 결과 in vivo및 in vitro에서 모두 항암활성이 뛰어나게 나타났으며, 세복수초 추출물의 항암작용은 자가포식(autophagy)을 증가시키는 것으로 나타났다. 세복수초 추출물은 in vitro및 in vivo에서 모두 LC3의 발현을 농도의존적으로 증가시켜며 p62의 발현을 억제시키는 것으로 확인되었으며, 따라서 세복수초 추출물은 자가포식(autophagy) 활성을 증가시켜 암세포의 세포사멸을 유도하는 것으로 판단되어 간암치료제 개발 및 간암치료제와의 병용요법 등 새로운 작용기전의 항암신약개발 소재로서의 가능성이 있음을 제시한다.

AN EXPERIMENTAL STUDY ON TUMOR INHIBITORY EFFECT OF RED GINSENG IN MICE AND RATS EXPOSED TO VARIOUS CHEMICAL CARCINOGENS

  • Yun Taik Koo;Yun Yeon Sook;Han In Won
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.87-113
    • /
    • 1980
  • This experiment was carried out to evaluate the effects of Korean ginseng extract on carcinogenesis induced by various chemical carcinogens. Red ginseng extract was used for this study and was administered orally to the experimental animals. Carcinogens that were injected in subscapsular region of ICR newborn mice within 24 hours after birth were 9,10-dimethyl-1,2-benzan-thracene (DMBA), urethane, N-2-fluorenylacetamide(AAF), aflatoxin $B_1$ and tobacco smoke condensate. N -methyl-N -nitroso-N'-nitroguani-dine(MNNG) was injected subcutaneously at the back of wistar rats. Experimental animals were autopsied in immediately after being sacrificed. All major organs were examined grossly and weighted. After fixation histopathological preparations were made for microscopical study. Following results were obtained. In DMBA group sacrificed at the 26th week after the treatment with DMBA, the incidence of lung adenoma was $77\%$ and the average number of the tumor was 17. However, in DMBA combined with red ginseng group, the incidence was $78\%$ and the average number of lung adenoma was 14.1. This indicates that ginseng extract had no effect on the incidence of lung adenoma but decreased the average number of lung adenoma by $17\%.$ In DMBA group sacrificed at the 48th week after the injection of DMBA, the lung adenoma incidence was $88\%.$ The average diameter of the largest lung adenoma was 3.5 cm, the incidence of diffuse pulmonary infiltration was $18\%$ and the average lung weight of male experimental mice was $528.2{\pm}469.1\;gm.$ On the other hand, in DMBA combined with red ginseng group sacrificed at the 48th week, the incidence of lung adenoma was $96\%.$ The average diameter of the largest adenoma was 2.7 cm, the incidence of diffuse pulmonary infiltration was $7\%$ and the average lung weight of male mice was $418.0{\pm}520\;gm.$ These observations show that ginseng extract did not have any inhibitory effect on the incidence of lung adenoma but decreased the average diameter of the largest lung adenoma by $23\%,$ the incidence of duffuse pulmonary infiltration by $63\%$ and the average lung weight of male experimental mice by $21\%.$ From these results we have found that the prolonged administration with ginseng extract showed no inhibitory effect on the incidence of adenoma but it had the inhibitory effect on the proliferation of lung adenomas induced by DMBA. In urethane group sacrificed at the 28th week after the injection of urethane, the incidence of lung adenoma was $94\%$ and the average number of lung adenoma was 8.6. In urethane combined with red ginseng group, the. incidence of lung adenoma was $73\%$ and the average number of adenoma was 6.0. These results indicate that there were $22\%$ decrease of the lung adenoma incidence and $31\%$ decrease of the average number of adenoma in urethane combined with red ginseng group. And in urethane group sacrificed at the 50th week, the incidence of lung adenoma was $98\%$ and the incidence of diffuse pulmonary infiltration was $14\%$. In urethane combined with ginseng group the incidence of lung adenoma was $85\%$ and the incidence of diffuse pulmonary infiltration was $12\%$. Therefore the ginseng administration resulted in $15\%$ decrease of the lung adenoma incidence and $14\%$ decrease of the diffuse pulmonary infiltration incidence. From these results we knew that the prolonged administration with ginseng extract inhibited the incidence and also the proliferation of the lung adenoma induced by urethane. Lung adenoma and hepatoma were induced in the experimental mice sacrificed at the 68th week but not in the experimental mice sacrificed at the 28th week after the injection of AAF. In AAF group sacrificed at the 68th week after the injection of AAF the incidence of lung adenoma was $18\%$ and the incidence of hepatoma was $27\%$. And in AAF combined with ginseng group the lung adenoma incidence was $12\%$ and the hepatoma incidence was $37\%$. So the ginseng seemed to decrease the lung adenoma incidence by AAF, but we were unable to conclude the significant inhibitory effect of the ginseng extract on the incidence of lung adenoma by AAF because the above incidence of lung adenoma were similar to that of control group which was $11\%$. And these experimental data revealed that ginseng extract didn't have any inhibitory effect on the incidence of hepatoma induced by AAF. In aflatoxin $B_1$ group sacrificed at the 56th week, the incidence of lung adenoma was $24\%$ and hepatoma was $11\%$. However in aflatoxin $B_1$ combined with ginseng group the incidence of lung adenoma was $17\%$ and hepatoma was $3\%$ These results indicate that there were $29\%$ decrease of the lung adenoma incidence and $75\%$ decrease of the hepatoma incidence in aflatoxin $B_1$ combined with ginseng group. In tobacco smoke condensate experimental group sacrificed at 67th week, no tumors were induced except just a few lung adenoma. The lung adenoma incidence both in tobacco smoke condensate group and in tobacco smoke condensate combined with ginseng group was $8\%$. And this incidence rate was similar to that of control group. These results indicate that the injection of 320 ug tobacco smoke condensate per ICR newborn mouse was unable to induce lung adenoma in our experiments. In MNNG group sacrificed at the 27th week the tumor incidence was $38.5\%$ and in MNNG combined with ginseng extract group was $37\%$. In MNNG group for investigation of the life span of tumor bearing rats the tumor incidence was $93\%$ and the average life span of tumor bearing rats was 318 days. And in MNNG combined with ginseng extract group the tumor incidence was $96\%$ and the average life span was 337 days. Tumor induced by MNNG was almost sarcoma. This indicates that there was no inhibitory effect of ginseng extract on the tumor incidence, but the extract prolonged the average life span of tumor bearing rats by approximately 19 days.

  • PDF