• Title/Summary/Keyword: hemp woody core

Search Result 8, Processing Time 0.027 seconds

Chemical Characterization of Industrial Hemp (Cannabis sativa) Biomass as Biorefinery Feedstock

  • Shin, Soo-Jeong;Han, Gyu-Seong;Choi, In-Gyu;Han, Sim-Hee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.222-225
    • /
    • 2008
  • Chemical composition and enzymatic saccharification characteristics of hemp woody core were investigated by their chemical composition analysis and enzymatic saccharification with commercially available cellulases (Celluclast 1.5L and Novozym 342). Hemp woody core have higher xylan and lower lignin contents than its bast fiber. Based on hemicelluloses and lignin composition, hemp woody core is similar with hardwood biomass. However, cellulose was more easily converted to glucose than xylan to xylose and this trend was confirmed both hemp woody core and yellow poplar. Hemp woody core biomass shows higher saccharification than yellow poplar (hardwood biomass) based on cellulose and xylan hydrolysis. With easier enzymatic saccharification in cellulose and xylan, and similar chemical composition, hemp woody core have better biorefinery feedstock characteristics than hardwood biomass.

Densified Pellet Fuel from Woody Core of Industrial Hemp (산업용 대마 목부를 이용한 고밀화 펠릿 연료 제조)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Shim, Hwa-Seob;Ahn, Byeong-Kuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.221-224
    • /
    • 2008
  • We made densified wood pellet by hemp woody core as replacing wood resource. Hemp was separated into the bast fiber and the woody core by hot steaming treatment. The hemp woody core had a similar lignin content and carbohydrate composition with hardwood. Also, the hemp had a low ash content, which resulted in a low ash formation in pellet burning. Heating value of the hemp pellet had a very similar to the pellet made by hardwoods. The hemp woody core can replace hardwood for densified wood pelletmaking.

  • PDF

Densified Pellet Fuel Using Woody Core of Industrial Hemp (Cannabis sativa L.) as an Agricultural waste (농업부산물인 산업용 대마(Cannabis sativa L.) 목부를 이용한 고밀화 펠릿 연료)

  • Han, Gyu-Seong;Lee, Soo-Min;Shin, Soo-Jeong
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • We prepared densified wood pellet by agricultural waste. The hemp woody core was used as replacing wood resource. Hemp was separated into the bast fiber and the woody core by hot steaming treatment. The hemp woody core had a similar lignin content(19.4%) and carbohydrate composition with hardwood(20-25% lignin in hardwood), respectively. Also, the hemp had a low ash content(0.5%), which resulted in a low ash formation in pellet burning. Heating value of the hemp pellet(18.40 MJ/kg) had a very similar to the pellet made by hardwoods. The hemp woody core could be replaced the hardwood for densified wood pellet.

Monosaccharides from industrial hemp (Cannabis sativa L.) woody core pretreatment with ammonium hydroxide soaking treatment followed by enzymatic saccharification

  • Shin, Soo-Jeong;Han, Sim-Hee;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia soaking treatment was introduced for hemp woody core pretreatment to increase enzymatic saccharification of polysaccharides. Portions of the xylan, cellulose, and lignin were removed by aqueous ammonia soaking, which improved the enzymatic saccharification of cellulose and xylan. Following ammonia soaking, 37% ($50^{\circ}C$-6 day treatment) to 61% ($90^{\circ}C$-16 h treatment) of the cellulose was converted to glucose and 33% ($50^{\circ}C$-6 day treatment) to 48% ($90^{\circ}C$-16 h treatment) of the xylan to xylose. Cellulose responded better to enzymatic saccharification than did xylan after the ammonia soaking treatment. Aqueous ammonia soaking pretreatment was more effective than electron beam irradiation for increasing enzymatic saccharification of xylan and cellulose in hemp woody core.

Enhancing Enzymatic Saccharification by Aqueous Ammonia Soaking Pretreatment on Several annual plants (일년생 바이오매스(옥수수 줄기, 담배 줄기, 대마 목부)의 암모니아 침지 전처리가 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Park, Jong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.418-421
    • /
    • 2009
  • Effects of aqueous ammonia soaking to three annual plants (hemp woody core, tobacco stalk and corn stover) awere investigated to focus on the enzymatic saccharification characteristics change by this treatment. At two different levels of treatment ($90^{\circ}C$-16 h and $45^{\circ}C$-6 days), higher temperature treatment led to more enzymatic saccharification of cellulose to glucose by commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 from Novozyme Korea). Difference among annual plants were significant. corn stover was the best response to enzymatic saccharification of cellulose and xylan by comercial enzymes all treatment conditions but tobacco stalk was the worst response to all of them. chemical composition or physical structure difference may brought this difference.

  • PDF

Chemical characterization of the fast-growing industrial hemp (Cannabis sativa) woody core and bast fiber (산업용 대마의 목부와 인피섬유의 화학 조성 분석)

  • Shin, Soo-Jeong;Koo, Bon-Wook;Lee, Jae-Won;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.482-484
    • /
    • 2006
  • 대마에 대한 분석 결과, 인피 섬유의 경우 리그닌 함량은 7.6%로 다른 목질계 바이오매스나 일년생 초본류와 비교하여 매우 낮은 리그닌 함량을 나타냈으며 탄수화물 함량은 65.4%로 목질계 바이오매스와 유사하고, 초본류보다는 오히려 높았다. 목부는 리그닌 및 탄수화물 함량이 활엽수와 유사한 경향을 나타내었는데 특히 높은 자일란의 함량이 확인되었다. 또한 회분 함량이 인피섬유와 목부에서 각각 5.0%와 2.3%로 낮은 값을 나타내어 당화 및 발효 공정에 적용될 때 회분에 의한 공정 장애(스케일링 등)의 가능성을 낮추어 줄 것으로 사료되었다. 최종적으로 이러한 화학적 분석을 통해 대체에너지 생산을 위한 자원으로서 대마의 가능성을 확인할 수 있었다.

  • PDF

Enzymatic saccharification of autohydrolyzed industrial hemp (Cannabis sativa L.) lignocellulosic biomass (자기가수분해 처리가 산업용 대마 목부 바이오매스의 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Lee, Soo-Min;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.74-76
    • /
    • 2008
  • Autohydrolysis at different temperature levels was applied as industrial hemp pretreatment technique for glucose generation. Main structural components removed by autohydrolysis was xylan, which is more sensitive in acidic hydrolysis condition than cellulose or lignin. Higher temperature reaction conditions promoted more biomass components (xylan) removal than lower temperature, which led to better respond to enzymatic saccharification of residual biomass after autohydrolysis. With $185^{\circ}C$ and 60 min, saccharification degree was 53.0% of cellulose in hemp woody core biomass.

  • PDF

Relationship between biomass components dissolution (xylan and lignin) and enzymatic saccharification of several ammonium hydroxide soaked biomasses (초본류 3가지 암모니아수 침지 처리에서 바이오매스 성분(자이란과 리그닌) 용출 정도와 효소당화의 관계)

  • Shin, Soo-Jeong;Han, Sim-Hee;Cho, Nam-Seok;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Corn stover, hemp woody core and tobacco stalk were treated by dilute ammonium hydroxide soaking for improving the enzymatic saccharification of cellulose and xylan to monosaccharides by commercial cellulase mixtures. As more lignin removal by dilute ammonium hydroxide impregnation led to more enzymatic saccaharification of cellulose and xylan to monosaccharides (corn stover vs tobacco stalk). There was no relationship between xylan removal by dilute ammonium hydroxide impregnation and enzymatic saccharification of polysaccharides in pretreated samples. Except corn stover, lower temperature and longer treatment ($50^{\circ}C$-6 day) was less lignin removal than higher temperature and shorter treatment ($90^{\circ}C$ 16 h). Corn stover showed the highest enzymatic saccharification of cellulose and xylan but tobacco stalk showed the lowest.