• Title/Summary/Keyword: hemispherical photo

Search Result 2, Processing Time 0.018 seconds

A Study on Light Condition between Pinus densiflora and Quercus variabilis Natural Mixed Forest Stands by Using the Hemispherical Photo Method (수관사진법을 이용한 소나무-굴참나무 천연림에 있어서의 광 조건 연구)

  • Chung Dong-Jun;Kim Young-Chai
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.127-134
    • /
    • 1999
  • This study was performed to obtain the basic data to present rational silvicultural tending plan. It makes these widely distributed pine-oak mixed stand and each of pure stand in middle province on object of this study and do comparative analysis of light condition about stand parameter and natural regeneration according to each slope(north, west and south) conditions of location in central part of South Korea. Sample plots for pine-oak mixed stand and pine and oak pure stand were established on each of southern, northern and western slopes based upon site and growth conditions of the slope. Sample plot was a circle of 0.05ha with a diameter of 25.24 m. A sample plot has between 30 and 40 tree in it. Total 23 sample plots were established; 9 pure pine stands, 8 pine-oak mixed stands. and 6 pure oak stands across lower, middle, upper parts of slopes. Relative light intensity within a stand was' measured by crown- photo(fish-eye lens; 180$^{\circ}$) system through fish-eye lens and by comparing each plot with the denuded through PAR-sensor. The crown closure ratio of pure pine stand (75%) shows much lower than that of mixed stand (90.9%) and pure oak stand (93%). The relative light intensity within a stand showed an opposite result. The crown closure of mixed stands tended to become gradually low as the slope moves from the north to the south, but the relative light Intensity within the stand tended to rise. By analyzing the relationship between the relative light intensity within a stand and stand parameter, light intensity within a stand tended to decrease as the diameter and N/ha increase. Number of oak seedlings and light intensity within a stand is in a straight-line regression relation. In particular, the number of oak seedlings was the highest in mixed stands on the southern slope. But no single pine seedling was found. The unfavorable conditions of l0cm thick litter layer and low relative light intensity in a stand (ranging between 4% and 8%) is considered to prevent pine seeds from germinating.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF