• Title/Summary/Keyword: hemagglutinin

Search Result 151, Processing Time 0.024 seconds

Combination of multiplex reverse transcription recombinase polymerase amplification assay and capillary electrophoresis provides high sensitive and high-throughput simultaneous detection of avian influenza virus subtypes

  • Tsai, Shou-Kuan;Chen, Chen-Chih;Lin, Han-Jia;Lin, Han-You;Chen, Ting-Tzu;Wang, Lih-Chiann
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The pandemic of avian influenza viruses (AIVs) in Asia has caused enormous economic loss in poultry industry and human health threat, especially clade 2.3.4.4 H5 and H7 subtypes in recent years. The endemic chicken H6 virus in Taiwan has also brought about human and dog infections. Since wild waterfowls is the major AIV reservoir, it is important to monitor the diversified subtypes in wildfowl flocks in early stage to prevent viral reassortment and transmission. To develop a more efficient and sensitive approach is a key issue in epidemic control. In this study, we integrate multiplex reverse transcription recombinase polymerase amplification (RT-RPA) and capillary electrophoresis (CE) for high-throughput detection and differentiation of AIVs in wild waterfowls in Taiwan. Four viral genes were detected simultaneously, including nucleoprotein (NP) gene of all AIVs, hemagglutinin (HA) gene of clade 2.3.4.4 H5, H6 and H7 subtypes. The detection limit of the developed detection system could achieve as low as one copy number for each of the four viral gene targets. Sixty wild waterfowl field samples were tested and all of the four gene signals were unambiguously identified within 6 h, including the initial sample processing and the final CE data analysis. The results indicated that multiplex RT-RPA combined with CE was an excellent alternative for instant simultaneous AIV detection and subtype differentiation. The high efficiency and sensitivity of the proposed method could greatly assist in wild bird monitoring and epidemic control of poultry.

Avian influenza virus surveillance in wild bird in South Korea from 2019 to 2022

  • Eun-Jee, Na;Su-Beom, Chae;Jun-Soo, Park;Yoon-Ji, Kim;Young-Sik, Kim;Jae-Ku, Oem
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Avian influenza viruses (AIVs) cause contagious diseases and have the potential to infect not only birds but also mammals. Wild birds are the natural reservoir of AIVs and spread them worldwide while migrating. Here we collected active AIV surveillance data from wild bird habitats during the 2019 to 2022 winter seasons (from September to March of the following year) in South Korea. We isolated 97 AIVs from a total of 7,590 fecal samples and found the yearly prevalence of AIVs was 0.83, 1.48, and 1.27, respectively. The prevalence of AIVs were generally higher from September to November. These findings demonstrate that a high number of wild birds that carry AIVs migrate into South Korea during the autumn season. The highest virus numbers were isolated from the species Anas platyrhynchos (72%; n=70), followed by Anas poecilorhyncha (15.4%; n=15), suggesting that each is an important host for these pathogens. Twenty-five hemagglutinin-neuraminidase subtypes were isolated, and all AIVs except the H5N8 subtype were found to be low-pathogenic avian influenza viruses (LPAIVs). Active surveillance of AIVs in wild birds could benefit public health because it could help to estimate their risk for introduction into animals and humans. Moreover, considering that 132 cases of human AIV infections have been reported worldwide within the last 5 years, active surveillance of AIVs is necessary to avoid outbreaks.

Effects of fermented soybean meal supplementation on the growth performance in sows and piglets

  • Seok Han, Ra;Hyoung Churl, Bae;Myoung Soo, Nam
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.807-814
    • /
    • 2021
  • This study sought to evaluate the effects of fermented soybean meal (FSBM) prepared by inoculating Bacillus coagulans NRR1207 and a Kefir starter on sows and Holstein cow's. FSBM has high nutritional value due to the hydrolysis of anti-nutritional factors such as trypsin inhibitors, hemagglutinin, raffinose and stachyose. In particular, it is widely used as a type of livestock feed due to its high protein content. The composition of FSBM is as follows: crude protein 55.15%, crude fat 2.12% and 0.2% KOH solubility 83.17%, it was higher than soybean meal (SBM). In particular, anti-nutritional factors such as trypsin inhibitor, raffinose and stachyose of FSBM were significantly reduced compared to the SBM. The number of lactic acid bacteria, including B. coagulans NRR1207, is 8.63 × 107 CFU·g-1, yeast is 1.1 × 106 CFU·g-1. Offspring numbers, the initial sucking number, sucking days, and weaned numbers of sows fed with FSBM all showed higher values compared to the control group. The average body weight and backfat thickness of sows fed with FSBM increased than those fed with SBM. The weight body of piglets fed with FSBM increased by 1.4 kg compared to the control group. The feed conversion ratio of piglets fed with FSBM was reduced by 10.69% compared to the control group. The results of this study indicate that FSBM can provide beneficial effects with regard to the feeding characteristics of sows and piglets.

Mucosal Administration of Lactobacillus casei Surface-Displayed HA1 Induces Protective Immune Responses against Avian Influenza A Virus in Mice

  • Dung T. Huynh;W.A. Gayan Chathuranga;Kiramage Chathuranga;Jong-Soo Lee;Chul-Joong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.735-745
    • /
    • 2024
  • Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

Growth Inhibition of Rats Fed Raw or Heated Korean Beans and the Effect of Methionine or Protein Supplementation (한국산 생두류 및 익힌두류를 섭취한 흰쥐의 성장저해와 Methionine 및 단백질 첨가의 영향)

  • Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.18 no.2
    • /
    • pp.126-138
    • /
    • 1985
  • A study was made on the effect of anti-nutritional factors found in some Korean beans : soybean, red bead, mung bean and kidney bean. Two animal experiments were conducted to investigate the nutritional value of the beans. The first experiment, in which the diet contained 15% protein from raw beans, compared the intensity of inhibition caused by methionine deficiency or a total amino acid deficiency. In the second experiment, the conditions were the same as in experiment I, except that heated beans were substituted for raw beans. Severe growth inhibition and high mortality was found in the raw kidney bean and red bean groups than in the soybean and mung bean groups. As no effect on the growth inhibition of raw bean groups was shown by methionine and protein supplementation, the inhibition could be ascribed mainly to the low feed intake and the low protein digestibility caused by toxic factors. Pancreatic enlargement was obserbed in all the raw bean groups. A increase in body weight, a decrease in mortality and a decrease in the weight pancreases were found in the heated bean groups. But the digestility of the diet and of the protein and the PER by heating did not increase as markedly as weight, except in the heated red bean groups. Even with heat treatment, the whole inhibitory action could not be eliminated.

  • PDF

Studies on Kagamboatang(KGBT) on the Hematopoiesis and Proliferation of Immune Function in Mice (가감보아탕(加減補兒湯)의 조혈(造血) 및 면역증진(免疫增進)에 관한 연구(硏究))

  • Kim Yun-Hee;Yoo Dong-Youl
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.79-116
    • /
    • 2000
  • The KGBT has been used to weak children with anorexia, fatigue, and growth retardation. This study was carried out to prove the effects of the hematopoiesis and the immune proliferation by KGBT. Previously, C57BL/6 mice was treated with cyclophosphamide(100mg/kg) for leukopenia, and then administered KGBT (concentration is 1.37 g/kg, 504 mg/kg, and 137 mg/kg) to the treated mice. The mice was analyzed expression of thrombopoietin(TPO), stem cell factor(SCF) and interleukin-3 from bone marrow cell, interleukin-10 (IL-10), and interferon-$ {\gamma}$(INF-${\gamma}$) from splenic cell, and NOSⅡ gene from macrophage using by RT-PCR. Also proliferation of immune cell was analyzed using 3H-thymidine uptake and flow cytometery in splenic cells. The results were obtained as follows ; 1. The total number of WBC, RBC and PLT was increased in the KGBT treated group than in the control group. 2. In vitro, the proliferation of splenic cells was increased in normal, control, and KGBT treated group. And Administration of KGBT was reduced the cytotoxicity by CTX. 3. In bone marrow cell, the gene expression of immune regulatory factor that associated with hematopoiesis, such as TPO, SCF, and IL-13 was increased in the KGBT treated group than control. 4 The titer of hemagglutinin and hemolysin was increased in the KGBT treated group than control. 5. In analysis of positive leucocytes from splenic cell of BALB/c mice, the subpopulation percent of CD4+, CD8+,and CD19+ was increased in the KGBT treated group than control. The KGBT has been used to weak children with anorexia, fatigue, and growth retardation. This study was carried out to prove the effects of the hematopoiesis and the immune proliferation by KGBT. Previously, C57BL/6 mice was treated with cyclophosphamide(100mg/kg) for leukopenia, and then administered KGBT (concentration is 1.37 g/kg, 504 mg/kg, and 137 mg/kg) to the treated mice. The mice was analyzed expression of thrombopoietin(TPO), stem cell factor(SCF) and interleukin-3 from bone marrow cell, interleukin-10 (IL-10), and interferon-$ {\gamma}$(INF-${\gamma}$) from splenic cell, and NOSⅡ gene from macrophage using by RT-PCR. Also proliferation of immune cell was analyzed using 3H-thymidine uptake and flow cytometery in splenic cells. The results were obtained as follows ; 1. The total number of WBC, RBC and PLT was increased in the KGBT treated group than in the control group. 2. In vitro, the proliferation of splenic cells was increased in normal, control, and KGBT treated group. And Administration of KGBT was reduced the cytotoxicity by CTX. 3. In bone marrow cell, the gene expression of immune regulatory factor that associated with hematopoiesis, such as TPO, SCF, and IL-13 was increased in the KGBT treated group than control. 4 The titer of hemagglutinin and hemolysin was increased in the KGBT treated group than control. 5. In analysis of positive leucocytes from splenic cell of BALB/c mice, the subpopulation percent of CD4+, CD8+,and CD19+ was increased in the KGBT treated group than control. 6. The expression of IL-10 gene was reduced in the KGBT treated group than control, whereas the expression of INF-${\gamma}$ was increased in the KGBT treated group. 7. In macrophage, the production of NO and gene expression of NOSH was increased in the KGBT treated group than control. 8. After infection of EMC virus, the survival time of infected mice was longer in the KGBT treated group than control.

  • PDF

Immunogenicity and Safety of Inactivated Influenza Vaccine in Healthy Korean Children and Adolescent (한국의 건강한 소아청소년을 대상으로 한 인플루엔자 사백신의 면역원성과 안전성 연구)

  • Ri, Soohyun;Kim, Mi Jeong;Kim, Yun-Kyung
    • Pediatric Infection and Vaccine
    • /
    • v.25 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Purpose: This study aimed to evaluate the immunogenicity and safety of a trivalent inactivated influenza vaccine (TIV) among healthy Korean children and adolescents. Methods: From October to December 2008, 65 healthy patients aged 6 months to 18 years who visited Korea University Ansan Hospital for influenza vaccination were enrolled in this study. We measured the hemagglutinin inhibition antibody titers at baseline and 30 days after vaccinating enrollees with split influenza vaccine and calculated the seroprotection rates, geometric mean titers, and seroconversion rates. Local and systemic adverse events were assessed after vaccination. Results: The seroprotection rates against all three viral strains (A/H1N1, A/H3N2, B) were 87.7%, 89.2%, and 89.2% (${\geq}70%$), respectively; seroconversion rates were 44.6%, 73.8%, and 63.1% (${\geq}40%$), respectively; and seroconversion factors were 4.5, 8.4, and 10.5 (>2.5), respectively. The TIV immunogenicity was acceptable according to the CPMP (Committee for Proprietary Medicinal Products) criteria. Although 48 patients (73.8%) reported one or more adverse events, no severe adverse events such as anaphylaxis and convulsion were observed. Forty-two patients (64.6%) reported a local skin reaction, including redness (29.2%), pain (43.1%), or swelling (41.5%) of the injected site, and 26 (40.0%) reported a systemic reaction: fatigue (23.1%), myalgia (20.0%), headache (10.8%), arthralgia (10.8%), chills (9.2%), or fever (7.7%). Conclusions: This study shows that the immunogenicity of the TIV vaccine is acceptable. As there were no serious adverse events aside from local reactions and mild systemic reactions, this vaccine can be safely used among healthy Korean children and adolescents.

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

An Experimental Study on the Effects of Houttuynia cordata Thunb and sanggukeum on Immune Function (어성초(魚腥草) 및 상국음(桑菊飮)이 면역기능(免疫機能)에 미치는 영향(影響))

  • Gil, Young-Sung;Jung, Sung-Ki;Rhee, Hyung-Kw
    • The Journal of Korean Medicine
    • /
    • v.16 no.1 s.29
    • /
    • pp.295-318
    • /
    • 1995
  • In order to investigate the effect of Houttuynia cordata Thunb and Sanggukeum on immune function, the author performed this experimental study. Delayed type hypersensitivity (DTH) and rosette forming cells(RFC) for cell-mediated immune response, hemagglutinin (HA) titers, hemolysin (HL) titers and plaque forming cells (PFC) for humoral immune response, immunoglogbulin (Ig G) titer, splenic natural Killer cell activity (NKCA) carbon clearance for phagocytic function of MPS(mononuclear phagocyte system) and change of weight were measured in ICR mice. The results were summarized as follows ; 1. DTH was increased with statistical significance in all of the treated group as compared with the control group. 2. RFC was increased with statistical significance in case of Houttuynia cordata Thunb but in case of sanggukeum and gamisanggukeum valuable increase of RFC was not recognized as compared with the control group. 3. HA titers were increased with statistical significance in case of Houttuynia cordata Thunb but in cases of Sanggukeum and Gamisanggukeum HA titers were not recognized as compared with the control group. 4. HL titers were increased with statistical significance in case of Houttuynia cordata Thunb but in cases of Sanggukeum and Gamisanggukeum valuable increase of HL titer was not recognized as compared with the control group. 5. PFC was increased in all of the treated group but valuable increase of PFC was not recognized as compared with the controal group. 6. Ig G titers were increased in all of the treated group but valuable increase of Ig G titer was not recognized as compared with the control group. 7. NKCA was increased with statistical significance in case of Houttuynia cordate Thunb but in case of Sanggukeum and Gamisanggukeum valuable increase of NKCA was not recognized as compared with the control group. 8. Carbon clearance was increased with statistical significance in case of Sanggukeum but in case of Houttuynia cordata Thunb and Gamisanggukeum valuable increase of carbon clearance was not recognized as compared with the control group. 9. Change of weight was increased with statistical significance in all of the treated group. Through in vivo experimental study in ICR mice, Houttuynia cordata Thunb enhances the cell-mediated immune responce, the humoral immune responce and natural killer cell activity. And Houttuynia cordata Thunb enhances immune responce as compared with that plused Sanggukeum. Sanggukeum enhances carbon clearance and enhances a little cell-mediated immune responce, the humoral immune response and natural killer cell activity. According to the above results it seems Houttuynia cordata Thunb and Sanggukeum was able to use Infection, Inflammation and Tumor.

  • PDF