• 제목/요약/키워드: helix angle

검색결과 120건 처리시간 0.024초

임상가를 위한 특집 2 - 엔진구동형 니켈-티타늄 파일의 디자인에 관한 고찰 (A review regarding on design of engine-driven nickel-titanium file)

  • 황호길
    • 대한치과의사협회지
    • /
    • 제51권10호
    • /
    • pp.551-555
    • /
    • 2013
  • The purpose of this study was to give a guideline for selecting the nickel-titanium (NiTi) file by review from many studies. Since the early 1990s, several instrument systems manufactured from NiTi have been introduced into endodontic practice. The specific design characteristics vary, such as tip shape and size, cross sectional view, helix angle, and pitch space. Some of the early systems have been removed from the market or play only minor roles; others are still widely used. New designs continually are produced, but the extent to which clinical outcomes will depend on design characteristics is difficult to forecast. In this study, I have reviewed the different design characteristics in respect of the safety and efficiency. With the review from many studies, I concluded that the clinicians must be understand the specific design characteristics for selecting the ideal NiTi rotary instruments.

다중날을 가진 스크류의 최적화 설계 (The optimum Design of the Multi-flight Screw using Finite Element Analysis)

  • 최동열;조승현;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도 (Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model)

  • 송정인;조진래
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

CFRP 구멍가공 시 공구의 절삭성능에 관한 연구 (Cutting Performance of Tool in work of CFRP Hole)

  • 신형곤;강기원;김영철;문정수;황성국
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.941-946
    • /
    • 2018
  • Currently, due to the development of technology, the industry is proceeding with the development of advanced materials with high performance such as light weight, heat resistance and electric conductivity. Carbon Fiber Reinforced Plastics (CFRP) is an excellent material with high heat resistance, high strength and thermal shock resistance. In order to obtain excellent hole shape in CFRP drilling, we compared the modified drill shape and the conventional carbide drill. On the other hand, we determine the proper helix angle by observing the CFRP surface according to the helix angle at the trimming of the end mill proceeding after the hole machining.

엔드밀링 공정에 의하여 생성된 측벽의 기하학적 특성과 평엔드밀 형상 사이의 관계 (Relationship Between Flat End-mill Shape and Geometrical Characteristics in Side Walls Generated by End-milling Process)

  • 김강
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.95-103
    • /
    • 2015
  • 평엔드밀 가공된 측벽 형상에 공구 형상이 미치는 영향에 대하여 알아보고자 한다. 이를 위하여, 공구 형상을 비틀림각, 절삭날 수, 직경으로 구분하여 특징지었으며, 가공면의 기하학적 특성은 서로 직교하는 이송방향 형상과 축방향 형상으로 나누어 고려하였다. 각 방향의 형상 특성은 공구와 공작물 및 절삭날과 공작물의 간섭 영역으로부터 계산한 순간 절삭면적을 바탕으로 추정하였으며, 추정의 타당성을 가공면 형상 및 배분력 측정을 통하여 검증하였다. 연구 결과, 이송방향 형상의 결함은 공구 퇴출 및 공구 경로의 곡률반경이 변하는 구간에서 나타나며, 이외의 구간에서는 축방향 형상의 결함이 주를 이루는 것이 확인되었다. 측벽의 가공정밀도를 향상시키기 위해서는, 상대적으로 직경이 작고, 비틀림각이 큰 절삭날을 많이 갖는 엔드밀을 사용하여 상향절삭 하는 것이 바람직할 것으로 추천된다.

Ultraviolet Resonance Raman Spectroscopy of Bacteriorhodopsin and Its Photointermediates

  • Hashimoto, Shinji
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.114-117
    • /
    • 2002
  • Ultraviolet resonance Raman (UVRR) spectroscopy was used to elucidate the dynamic change of the protein structure of bacteriorhodopsin (BR) during the photocycle. The photointermediates minus light- adapted (LA) BR difference spectra show Trp difference signals, which are assigned to Trp189 or Trp182 on helix F by using the mutants, W182F and W189F. The Difference signals of Trp 182 indicates an increase in hydrogen bonding strength at the indole nitrogen and a large change in the side chain conformation (X$\^$2,1/ torsion angle) in the M$_1$ \longrightarrow M$_2$ transition. On the other hand, Trp189 shows an increased hydrophobic interaction. These results suggest that the tilt of helix F occurs in the M$_1$\longrightarrow M$_2$ transition. In the M$_2$ \longrightarrow N transition, the hydrophobic interaction of Trp182 decreases drastically, The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.

  • PDF

Analysis of the Dimensionless Torque in Cone Drum False Twisting Mechanism

  • Lee, Choon-Gil;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • 제4권4호
    • /
    • pp.161-168
    • /
    • 2003
  • An investigation of the dimensionless torque in the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by the passing yarn without a special driving device. This research is composed of the theoretical analysis of the false twisting mechanism and the experimental analysis at room temperature. The equations have been derived which shows interrelationship of the conical angle of cone drum, the wrapping angle, the drag angle, and the yam helix angle. Theoretical values of dimensionless torque were calculated and were compared with the experimental results. It is shown that, as the conical angle and the projected wrapping angle increased, the dimensionless torque also increased. But the conical angle was reached to ${30.75}^{\circ}C$, the dimensionless torque decreased.

Analysis of the Relative Velocity of Friction Surface in Cone Drum False Twisting Mechanism

  • Lee, Choon Gil
    • 한국의류산업학회지
    • /
    • 제2권5호
    • /
    • pp.443-449
    • /
    • 2000
  • An investigation of the relative velocity of friction surface for the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by passing the yarn without a special driving device. This research is theoretically composed of the analysis of the false twisting mechanism. The equations were derived by using the conical angle of the cone drum, projected wrapping angle, and yarn helix angle. Theoretical values of the relative velocity of friction surface were calculated and discussed. It is shown that, as the projected wrapping angle increased, the relative velocity of friction surface decreased. But as the conical angle increased the relative velocity of friction surface also increased.

  • PDF

자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구 (A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission)

  • 권현식
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.