• Title/Summary/Keyword: helium pressure

Search Result 180, Processing Time 0.021 seconds

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

Development and Test results of the Dielectric Evaluation System for a Helium Gas Cooled HTS Cable (헬륨가스 냉각 고온초전도 케이블의 절연특성 평가 시스템 개발 및 성능평가)

  • Kwag, Dong-Soon;Rodrigo, Horatio
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • The novel type of cable under consideration is cooled by gaseous Helium at elevated pressure. Helium is known for having poor electric breakdown strength; therefore the dielectric capabilities of this type of cable must be tested under conditions similar to the envisaged operation. In order to study the dielectric performance we have designed and built a novel high pressure cryostat rated at 2.17 MPa which has been used for testing model cables of lengths of up to 1 m. The cryostat is an open system where the gas is not re-circulated. This allows maintaining a high purity of the gas. The target temperature range is between 40 K and 70 K. This substantially increases the critical current density of the HTS compared to 77 K, which is the typical temperature of cables cooled by liquid nitrogen. The cryostat presented allows for adjusting the temperature and keeping it constant for the time necessary to run a complete dielectric characterization test. We give a detailed description of the cryostat. Measurements of partial discharge inception voltages as well as the temperature distribution along the model cables as a function of time are presented.

Development and performance evaluation of a cryogenic blower for HTS magnets

  • Kwon, Yonghyun;Mun, Jeongmin;Lee, Jaehwan;Seo, Geonghang;Kim, Dongmin;Lee, Changhyeong;Sim, Kideok;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.57-61
    • /
    • 2020
  • Cooling by gas helium circulation can be used for various HTS (high temperature superconductor) magnets operating at 20~40 K, and a cryogenic blower is an essential device for circulating gas helium in the cooling system. The performance of the cryogenic blower is determined by various design parameters such as the impeller diameter, the blade number, the vane angle, the volute cross-sectional area, and the rotating speed. The trailing edge angle and the height of impeller vane are also key design factors in determining the blower performance. This study describes the design, fabrication and performance evaluation of cryogenic blower to produce a flow rate of 30 g/s at 5 bar, 35 K gas helium. The impeller shape is designed using a specific speed/specific diameter diagram and CFD analysis. After the fabrication of the cryogenic blower, a test equipment is also developed using a GM cryocooler. The measured flow rates and the pressure differences are compared with the design values at various rotating speeds and the results show a good agreement. Isentropic efficiency is also evaluated using the measured pressures and temperatures.

Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃ (니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

Helium Leak Test for the PLS Storage Ring Chamber (포항가속기 저장링챔버의 헬륨누설검사)

  • Choi, M.H.;Kim, H.J.;Choi, W.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 1993
  • The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of $10^{-10}Torr$ which requires UHV welding to have helium leak rate less than $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$ for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed.

  • PDF

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

A development of linear compressor for a cryogenic stirling cooler (극저온 스터링 냉동기용 선형 압축기 개발)

  • 지상우;임경화;강희석;강경태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.731-734
    • /
    • 2001
  • A cryogenic stirling cooler is currently under development at Korea Institute of Industrial Technology(KITECH). Cryocooler has many kinds of types. The stirling cooler is the most appropriate one for under 80K with the trait of long life cycle and small size. The stirling cooler uses helium as a working fluid. Helium is pressurized by the linear compressor which is driver by linear motor. In this paper, the change of pressure and volume is studied by the isothermal analysis method. It is necessary to investigate the optimized pressure to meets the highest COP. The compressor's piston and expender's displacer interact according to the working fluid's pressure level and the phase difference. This paper presents the relation between the initial pressure and the work of cryocooler. By that results, we can predict the performance of linear compressor.

  • PDF

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Test of evaluating performance of Helium recondensing type cryostat with 4 K GM cryocooler (4 K GM 극저온냉동기를 이용한 헬륨 재응축형 극저온용기의 성능 평가시험)

  • 김형진;김성래;심기덕;진홍범;권영길;장호명;이봉근
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.77-81
    • /
    • 2002
  • The helium recondensing type cryostat with 4 K GM cryocooler is fabricated in order to keep cryogenic state of two saddle type superconducting magnet opposite to each other designed maximum 0.3 T magnetic field, and 1270 mm diameter open bore. The current leads which consist of metal current leads made for brass sheet and HTS current leads made in American Superconductor$^{TM}$ intermediate cool down with cryocooler Thus , the cryocooler for helium recondensing is a 1.5W/4.2 K GM SUMITOMO cryocooler. While superconducting magnet is working of 1600 gauss to 200 A, the cryostat keep constantly the level of liquid helium at 0.05 bar gauge pressure.e.

  • PDF

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.