• Title/Summary/Keyword: helical strakes

Search Result 2, Processing Time 0.016 seconds

Effectiveness of strake installation for traffic signal structure fatigue mitigation

  • Wieghaus, Kyle T.;Hurlebaus, Stefan;Mander, John B.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.393-409
    • /
    • 2014
  • Across-wind response is often the cause of significant structural vibrations that in turn cause fatigue damage to welded and other connections. The efficacy of low-cost helical strakes to mitigate such adverse response is presented for a traffic signal structure. Field observations are made on a prototype structure in a natural wind environment without and with helical strakes installed on the cantilevered arm. Through continuous monitoring, the strakes were found to be effective in reducing across-wind response at wind speeds less than 10 m/s. Estimates of fatigue life are made for four different geographical locations and wind environments. Results for the class of traffic signal structure show that helical arm strakes are most effective in locations with benign wind environments where the average annual wind speed is not more than the vortex shedding wind speed, which for this investigation is 5 m/s. It is concluded that while strakes may be effective, it is not the panacea to mitigating connection fatigue at all locations.

Experimental study of cactus-like body shape on flow-induced vibration mitigation of clustered cylinders

  • Shi, Chen;Liu, Yang;Wang, Jialu;Chen, Fabo;Liu, Zhihui;Bao, Xingxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.194-207
    • /
    • 2021
  • Vortex-Induced Vibration (VIV) is a major contributor to the fatigue damage of marine risers which are often arranged in an array configuration. In addition to helical strakes and fairings, studies have been strived in searching for possible VIV suppression techniques. Inspired by giant Saguaro Cacti, flexible cylinders of different cactus-shaped cross sections were tested in a water tunnel facility, and test results showed that cactus-like body shapes reduced VIV responses of a cylinder at no cost of significant increase of drag. A series of experiments were conducted on a pair of two tandem-arranged flexible cylinders and an array of four cylinders in a square configuration to investigate the effects of wake on the dynamic responses of cylinders and the VIV mitigation effectiveness of the cactus-like body shape. Results showed that the cylinders in a square configuration, either at the upstream or downstream positions, might have larger dynamic responses than those of a single cylinder. The cactus-like body shape could mitigate VIV responses of cylinders at upstream positions in an array configuration; however, similar to helical strakes, the mitigation efficiency was reduced on downstream cylinders. Note that the cactus-like cross-sectional shape investigated was not optimized for VIV suppression. The present study indicates that the modification of the cross-sectional shape of a cylinder to a well-designed cactus-like shape may be used as an alternative technique to mitigate the VIV of marine risers.