• Title/Summary/Keyword: heavy-load

Search Result 1,042, Processing Time 0.022 seconds

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Trust Predicated Routing Framework with Optimized Cluster Head Selection using Cuckoo Search Algorithm for MANET

  • Sekhar, J. Chandra;Prasad, Ramineni Sivarama
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • This paper presents a Cuckoo search algorithm to secure adversaries misdirecting multi-hop routing in Mobile ad hoc networks (MANETs) using a robust Trust Predicated Routing Framework with an optimized cluster head selection. The clustering technique designed in this framework leads to efficient routing in MANETs. The heavy work load in the node causes an energy drop in cluster head, which leads to re-clustering of the group, and another cluster head is selected to avoid packet loss during data transmission. The problem in the re-clustering process is that the overall efficiency of the routing process is reduced and the processing time is increased. A Cuckoo search based optimization algorithm is proposed to solve the problem of re-clustering by selecting the secondary cluster head within the initially formed cluster group and eliminating the reclustering process. The proposed framework enables a node to select a reliable and secure route for MANET and the performance can be evaluated by comparing the simulated results with the AODV routing protocol, which shows that the performance of the proposed routing protocol are improved significantly.

Calculation of Load on Jacket Leg during Float-over Installation of Dual Topsides using Single Vessel (단일 설치선을 사용한 2기 해양플랜트 Topside Float Over 설치 시 Jacket Leg의 하중 계산)

  • Bae, Dong-Yeol;Lee, Seung-Jae;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The float over method is the most preferred method for installing heavy topside onto a jacket platform. A very complex platform with multiple jacket structures on a specific field requires multiple installation procedures. This study validated the installation of two topsides using a single installation barge to reduce the operation and installation cost. The hydrodynamic properties of the installation barge during the installation of two topsides were calculated. The tension and fender forces during docking were investigated to show the validity of the proposed dual topside installation method. In conclusion, the operational safety of the proposed procedure was validated through the calculation of the motion of the installation vessel and loads on the jacket legs.

A Study on Radiated and Conducted Noise for Small Electrical Energy Storage System due to Its Operating State (소형 전기에너지저장장치 운전조건에 따른 방사 및 전도 방해에 관한 연구)

  • Jung, Jeong-Il;Ahn, Gun-Hyun;Kim, Young-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • When using a secondary battery in energy storage units, if the grid is in light duty the active power is stored so it can be used when the grid is in heavy duty. This makes possible for the load equalize and make the grid optimized. Recently the government is trying to propagate this technology. Depending on its capacity this kind of electric energy storage unit is used in adjusting the frequency, break up the energy peak in summer and winter, stabilize the energy output of renewable energy which can change unstably because of the environment. Which makes it possible to stabilize the grid. It is anticipated that market of 120 trillion won will be developed worldwide in 2030. Currently in Korea a steady supply is in progress. However because of stray electromagnetic waves some other electronics are malfunctioning. This paper covers the research in the method to detect the emission noise in small electric energy storage units using lithium secondary batteries and battery management system, Power conditioning systems with CIPSR standards. And the research of a more efficient method to measure such stray electromagnetic waves.

Body Impedance Control for Walking Stabilization of a Quadrupedal Robot (4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어)

  • Lee, Soo-Yeong;Hong, Ye-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

A Study on System Stability Improvement of Power System with High Speed Electric Railway Using STATCOM (STATCOM을 이용한 고속전철 부하가 연계된 계통의 안정도 향상에 관한 연구)

  • 이준경;오재경;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.625-631
    • /
    • 2003
  • The purpose of this paper is to assess experimentally system stability of the 154 ㎸ transmission system due to the current of the forthcoming AC High-Speed Railway (HSR) era. It introduces a simple method to evaluate the system stability The proposed method also shows the relationship between stability and power losses, and the stability indices made by the numerical process proposed in this paper will be used to assess whether a system can be stabilized or not. This paper also presents the improvement of the stability via loss reduction using STATCOM. Reactive power compensation is often the most effective way to improve both power transfer capability and system stability. The suitable modeling of the electric railway system should be applicable to the PSS/E. In the case study the proposed method is tested on a practical system of the Korea Electric Power Corporation (KEPCO) which will be expected to accommodate the heavy HSR load. Furthermore, it prove that the compensation of voltage drop and its by-product, loss reduction is closely related to improvement of system stability.

A CS/MLBP Reservtion Control Scheme in Integrated Data/Voice Local Area Networks (데이터/음성 공용 LAN에서의 CS/MLBP 예약제어방식)

  • 이재진;최흥문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 1987
  • This paper proposes a CS/MLBP(carrier sence/message and location based priority) reservation sheme in integrated data/voice local area networks. In this sceme reservation can be done with only 2 reservation bits regardless of the total number of stations in the network. Thus the reservation time is shorter than that of DSMA scheme(6) where reservation time is proportional to the logarithm of the total number of stations. Simulation results show that, as compared to DSMA scheme, this control scheme improves th delay-throughput characteristics of both the data and the voice traffic, reduces the lossrate of voice packet at heavy load. Results also show that the performance of the propoxed scheme is independant of the total number of the stations allowed.

  • PDF

Selection of Cutting Fluids for Environmentally Clean Machining (청정 절삭 가공을 위한 절삭유제의 선택)

  • Chang, Yoonsang
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • Cutting fluids in machining process are one of the parameters which have serious effects on the environment. A simple method to accomplish the environmentally clean process is to evaluate the effects of cutting fluids and select one which has the least environmental load. In this research, a process planning to select the best cutting fluid is suggested considering both machinability and environmental effects. The selection criteria and evaluation method named AHP are introduced. The planning process is illustrated with drilling characterized as a heavy-duty and low-speed process. Five standard fluids are compared with respect to five environmental attributes. Compounded cutting oils are superior to water-soluble oils in both machinability and environmental effects.

  • PDF

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).