• 제목/요약/키워드: heavy wind load

검색결과 47건 처리시간 0.024초

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

비닐하우스의 풍하중 구조안전성 검토에 관한 연구 (A Study on the Structural Safety Analysis for Vinyl House at Wind Load)

  • 백신원
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.72-77
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used to grow fruits, flowers and vegetables in the countryside. Due to climate change, vinyl houses are often destroyed by strong winds or typhoons in summer. Many farmers suffer great economic damage from the collapse of vinyl houses. So it is very important to build a safe vinyl house and find a method to withstand this heavy wind load. In this study, a structural analysis was performed on four types of vinyl houses(10-single-4, 10-single-6, 10-single-7, 10-single-10). In addition, axial force and flexural moment are obtained from the structural analysis of four types of vinyl house. For these four types of vinyl house, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of structural analysis for four types of vinyl house showed that the vinyl house structure constructed as a standard was a very dangerous structure. Therefore, it is necessary to devise diverse methods in order to make vinyl houses structurally safe for heavy wind load in the future. Also a variety of manual development is needed to prevent the collapse of vinyl houses at heavy wind load.

비닐하우스 골조에 작용하는 풍하중에 대한 강선보강효과 (Effect of Wire Bracing to Wind Load Acting on Vinyl House Frame)

  • 정동조;탱차이
    • 한국농촌건축학회논문집
    • /
    • 제12권2호
    • /
    • pp.23-29
    • /
    • 2010
  • Vinyl house is a simple agricultural structure that is installed economically and easily. In contrast, every year the farmers have spent a lot of money because of the collapse of this structure caused by the external forces such as strong wind and heavy snow. To prevent this damage due to frequent heavy snow and strong wind, it would be necessary to design it again. But getting rid of former vinyl house and reconstructing is unreasonable. It would be very economic if the former vinyl house is strengthened simply. This paper covers the investigation of the effect of the bracing systems that are additionally inserted inside the ordinary single frames as well as unbraced multiple frames that resisting only the strong wind load.

풍속 증가에 따른 풍하중이 컨테이너 크레인의 구조 안정성에 미치는 영향 (Analyzing the effect on a Structural Stability of a Container Crane according to an Increased Wind velocity)

  • 권순규;한근조;한동섭;이성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.373-374
    • /
    • 2006
  • This study is carried out to analyze the stability of a container crane in according to the change of a wind direction and a machinery house location when a wind load of a wind velocity, 75m/s was applied on the state stowing a container crane by a heavy wind. A design wind load applied to this study was calculated in observance of 'Load Criteria of Building Structure'. And we analyzed the reactions of each supporting points according to appling a wind direction to an interval of $10^{\circ}\;in\;0^{\circ}{\sim}180^{\circ}$ and the structure stability of a container crane according to changing a machinery house. location occupying 15% of a container crane weight. From a results of this study, we presented a design criteria of an overturning disturbance equipment, tie-down.

  • PDF

경북지방 파이프하우스의 안전골조간격에 관한 연구 (A Study on the Safety Frame Interval of Pipe Houses in Kyungpook Region)

  • 이현우;이석건
    • 생물환경조절학회지
    • /
    • 제4권2호
    • /
    • pp.195-202
    • /
    • 1995
  • As the pipe houses were constructed by imitation and routine without a structural design by now, they were often destructed by a strong wind or a heavy snowfall. The purpose of this study was to provide the basic data for the safety structural design of the pipe houses in Kyungpook region to prevent meteorological disaster. It was shown that the change of frame interval according to the safety factor under the wind load was similar that under the snow load. But the safety frame interval under the snow load was approximately 0.5-0.6m greater than that under the wind load for equal safety factor. Therefore, it seemed that the maximum safety frame interval was to be decided by the snow load. The frame of the pipe houses in Seungju region was structurally stable under the design snow load in recurrence intervals of 8-15years, but was unstable in Kolyong region.

  • PDF

조립식 클립형 비닐하우스의 강풍 및 폭설시 구조 안정성 평가 (An Evaluation of the Structural Stability of a Clip Type Prefabricated Greenhouse under Strong Wind and Heavy Snow Conditions)

  • 노경철
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3423-3428
    • /
    • 2014
  • 본 연구는 폭설 및 강풍 시 조립식 비닐하우스의 구조안정성을 해석하였으며, 내재해 규격 중 가장 엄격한 기준인 적설량 40 cm, 풍속 40m/s를 재해 기준으로 고려하여 적설 하중 및 풍 하중이 비닐하우스 구조에 미치는 영향을 분석하였다. 풍 하중의 경우, 공기역학적 특성에 의해 비닐하우스의 형상에 따른 국부적인 압력 분포 특성이 상이하기 때문에 유체-고체연성 해석 기법을 적용하였다. 적설하중 및 풍하중 해석 결과에서 비닐하우스 하단지지 파이프와 지붕서까래 체결 부분 근처에서 가장 큰 응력 및 변형이 발생하며, 적설 하중에 비해 풍 하중 시 구조 안정성이 다소 취약함을 확인하였다. 따라서 본 연구 결과를 기반으로 지지 파이프의 변형을 최소화 하면서 설치 및 유지보수가 용이한 조립식 연결 클립 설계를 위한 기초자료로 활용할 예정이다.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

원예시설의 지붕형식에 따른 단면력의 비교분석 (Comparison of Maximum Section Forces of Greenhouse Structures with respect to Roof Types)

  • 이석건;이현우;손정억;이종원
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.84-89
    • /
    • 1994
  • Section forces of greenhouse structures were studied to suggest basic information for the structural design of greenhouses with respect to roof types and support conditions. Structural analyses were performed for pitched and arched roof, and fixed and hinged support under snow loads and wind loads. Followings are the results obtained and are expected to be useful in determining the span length and roof type in greenhouse design. 1. Special considerations might he required for roof design at the heavy snow region, and for the support design at the strong wind region, respectively. 2. Single-span structure was found to be stronger than multi-span structure under the snow load, but the former was found to be weaker than the latter under the wind load. 3. Arched roof structure was expected to be safer than pitched roof structure if the dimensions and loads were equal. 4. Greenhouse orientation and roof slope should be considered in optimum structural design of grrenhouses, because these two factors are closely related with the influence of wind load and snow load.

  • PDF

설계풍속 상향 조정에 따른 50ton급 컨테이너 크레인의 구조 안정성 평가 (The Analysis of a Structural Stability of a 50ton Container Crane according to an Increased Design Wind velocity)

  • 권순규;이성욱;한동섭;심재준;한근조
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.241-246
    • /
    • 2005
  • 본 연구는 컨테이너 크레인이 강풍에 대비하여 크레인을 고정하는 계류 시에 75m/s의 풍하중이 50ton급 컨테이너 크레인에 작용될 때, 풍향변화와 기계실의 위치 변화가 50ton급 컨테이너 크레인의 구조적 안정성에 미치는 영향을 분석하였다.. 본 연구에 적용된 설계 풍하중은 "건축물 하중 기준"에 의거하여 산출하였으며. 풍향은 $0^{\circ}\~180^{\circ}$$15^{\circ}$ 간격으로 적용하여 각 지지점에서의 반력을 분석하였다. 그리고 전체 자중의 $15\%$를 차지하는 기계실의 위치 변화가 컨테이너 크레인의 구조 안정성에 미치는 영향을 분석하였다. 그리고 이 결과들을 바탕으로 컨테이너 크레인의 전도방지장치인 타이다운(Tie-down)의 설계기준을 제시하였다.

  • PDF

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.