• Title/Summary/Keyword: heavy rainfall

Search Result 882, Processing Time 0.022 seconds

Effect of Several Herbicides in the Polyethylene - film Mulched Young Mulberry Field (P.E. 필름피복(被覆) 밀식(密植) 뽕밭에서의 수종(數種) 제초제(除草劑) 처리효과(處理效果))

  • Kim, Ho-Rak;Kwon, Yong-Woong;Cho, Yong-Woo
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.202-210
    • /
    • 1985
  • Requirements in weed control in a mulberry field are much similar to those in orchards, but also feature a longer period of weed control of various kinds of persistent weeds, i.e., spring, summer, and winter annuals as well as perennials. In addition the mulberry tree is relatively more sensitive to herbicide injury. Hence, very few herbicides have been used in mulberry field. The present study was conducted to evaluate the usefulness of oxyfluorfen in comparison with alachlor and simazine, which are registered for ordinary mulberry field in Korea, for weed control efficacy in the new, rapidly increasing practice of transparent polyethylene-film mulched and densely planted younger mulberry culture. Dominant spring weeds were Galium spp., Erigeron spp., Polygonum senticosum, and Chenopodium spp. in the non-mulched interbed area in contrast to the Digitaria spp. and Potulaca spp, under mulch. Dominant summer weeds were Digitaria spp., Portulaca spp., Erigeron spp., Artemisia spp. and Calystegia japonica in the non-mulched interbed area while weeds did not occur significantly during summer under mulch which were shaded by vigorously growing mulberry trees. The weeds occurred under mulch in spring reduced shoot growth of young mulberry tree resulting in the reduced yield of mulberry leaves for silkworms. The weeds occurred in the interbed area did not affect until May, but interfered later summer- and fall-growth of mulberry tree. Early single spring application of alachlor(EC), simazine(WP) or oxyfluorfen(EC) at a rate of 650 g, 750 g or 350 g ai per ha, respectively, controlled most annuals satisfactorily to fall in the mulched bed area. In the nonmulched interbed area, however, thrice does of alchlor or simazine was necessary for satisfactory control of spring weeds, followed by summer application of alachlor or simazine at twice dose level as tank mixture with paraquat at 490 g ai per ha for satisfactory control of summer to fall weeds. Single spring application of oxyfluorfen at a rate of 1400 g ai per ha was persistently effective to control satisfactorily even summer and fall weeds. However, heavy rainfall splashed soil borne oxyfluorfen to the lower branch leaves causing some leaf burns. Spring application of oxyfluorfen at a rate of 350 g ai per ha followed by summer application of oxyfluorfen and paraquat tank mixture (350 g ai + 490 g ai) was the best choice for the non-mulched interbed area weed control among the treatments.

  • PDF

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.