• Title/Summary/Keyword: heavy metals leaching

Search Result 232, Processing Time 0.029 seconds

Leaching Test and Adsorption Characteristics of Porphyry for Removal of Heavy Metals (맥반석의 용출시험 및 중금속 흡착특성)

  • Kim, Jong-Boo;Shen, Ming-Guo;Sung, Nak-Whan;Choi, Moon-Jeong;Kim, Kyung-Joo;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.57-62
    • /
    • 2000
  • This experiment was done to investigate the leaching and adsorption properties of heavy metals on porphyry. The comparison with respect to the leachability of heavy metals from porphyry between the Korea Standard Leaching Test (KSLT) and the Toxicity Characteristic Leaching Procedure (TCLP) was carried out. The fractional composition of leachate and the total concentration of heavy metal of porphyry were studied through Sequential Extraction Procedure (SEP) and EPA Method 3050. Adsorption experiment of porphyry has pointed out that the optimum dosage of porphyry for 50ppm Pb was over 10g/L, the effective particle size for absorption was below 200 mesh and the optimum pH was about 7. From the Freundlich' adsorption equation, 1/n was 1.0722, and k was 0.0041. After adsorption, the fractional composition of Pb was changed. The exchangeable, carbonate, reducible fractions were increased, and the organic fraction was not changed, and the residual fraction was decreased.

  • PDF

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.

Environmental Assessment of Vitrified Mine Tailing Aggregate Using Various Leaching Methods (고농도 중금속 함유 광미를 이용한 유리화 처리 골재의 장기 용출특성에 따른 환경안전성 평가)

  • Lee, Sang-Woo;Chun, Sa-Ho;Lee, Ki-Kang;Lee, Sanghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Vitrified aggregates obtained by using mine tailings were evaluated using various leaching methods to assess their environmental safety. The leaching tests in this study include continuous batch leaching, Dutch availability leaching, pH-stat and tank diffusion test as well as TCLP (Toxicity Characteristic Leaching Procedure), which is commonly adopted. Vitrification technique has successfully been applied treating some solid wastes containing high level of heavy metals, such as EAF (Electric Arc Furnace) dust and mine tailings. The potentially most leachable element among trace metals was As and theoretically about 7% of total concentrations in the aggregate can be released under extreme condition. Zinc was leached about 4% and the other trace metals including Cd, Cr and Pb were hardly released from the vitrified mine tailing aggregate.

Distribution of Heavy Metals in Sediment Cores Collected from the Nakdong River, South Korea

  • Magalie, Ntahokaja;Lee, Jiyeong;Kang, Jihye;Kim, Jeonghoon;Park, Ho-Jin;Bae, Sang Yeol;Jeong, Seok;Kim, Young-Seog;Ryu, Jong-Sik
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2021
  • Understanding the distribution of heavy metals in sediment is necessary because labile heavy metals can partition into the water column and bioaccumulate in aquatic organisms. Here we investigated six heavy metals (Co, Cu, Mn, Ni, Pb, and Zn) in sediment cores using a five-step sequential leaching method to examine the occurrence of heavy metals in the sediment. The results showed that all elements, except Mn, are depleted in the exchangeable and carbonate fractions. However, heavy metal concentrations are much higher in the Fe-Mn oxide and organic matter fractions, especially for Cu, indicating enrichment in the organic matter fraction. Furthermore, contamination parameters (contamination factor and geoaccumulation index) indicate that Mn contamination is high, primarily derived from anthropogenic sources, presenting a potential risk to ecosystems in the Nakdong River.

Emission Characteristics of Metal Elements from a MSW Incinerator (도시폐기물 소각시설에서의 금속배출특성 연구)

  • Kim, Ki-Heon;Kim, Sam-Cwan;Song, Geum-Ju;Seo, Yong-Chil
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The behavior and characteristics of heavy metals at different streams in a MSWI(Municipal Solid Waste Incinerator) with a capacity of 100tonnes/day were investigated by measuring the concentration of heavy metals and gases and analyzing their leaching data from ashes. Metal components of Cr, Cu, Cd and Pb were in higher concentrations in the fly ashes collected after the water spray tower than in the bottom ashes. It was due to condensation by a lower temperature with water spray cooling. Metal contents in the bottom ash became higher for finer particles as expected. The mass balance of heavy metals in different stream was estimated from the analyzed data in bottom ash and collected dusts at different locations. For the lower volatility of metals such as Pb, Cu, Cr, 88-97% of them remained in the bottom ash, while Cd and Hg escaped from the combustor with remaining in bottom ash of 18.4 and 0.8%, respectively. In most cases the leaching rate of fly ash showed higher values than that of bottom ash, with the their average acidities of 9.8 and 11.9 respectively.

  • PDF

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

Depth Profiles of Heavy Metals in the Surface Sediments of $H^{o}edong$ Reservoir

  • Moon Byung-Chul;Park Kwang-Jae;Jung Eui-Han;Jeong Gi Ho
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • We investigated the depth profiles of heavy metals in the surface sediments at Heedong reservoir in Pusan. Sampling was done at the intervals of 50 m of drift along the water channel into the reservoir. All samples were analyzed with an ICP-AES. We determined the content of Zn, Pb, Cd, Mn, Cu, Cr, and Fe. The overall mean content of these heavy metals were observed to $(2.9\pm1.2){\times}10^{-3},\;(1.3\pm0.7){\times}10^{-3},$ $(1.9\pm2.1){\times}10^{-4},$ $(2.3\pm1.1){\times}10^{-2},\;(1.6\pm1.0){\times}10^{-3},\;and\;(4.5\pm2.6){\times}10^{-4}$ ppm/ppmFe, respectively excluding iron data. Mean contents of Cu show an increasing trend toward the surface of sediments, while those of Cd show a decreasing trend, and those of Pb and Cr are relatively stable. Comparing with the contents of heavy metals in soils at two sites of Kumjeong mountain, enrichment factors of heavy metals in the surface sediments were determined. Among heavy metals we investigated, copper showed the largest value of enrichment factor. Considering the maximum content of heavy metals in the surface sediment, the values of enrichment factors of Cu, Cd and Cr were significant, which were 22, 8.1 and 4.0, respectively. In leaching experiment, it appeared that Pb, Cd, Cr, and Fe in sediments were hardly leached out into water, We also examined the effect of pH on the content of heavy metals.

  • PDF

Depth Profiles of Heavy Metals in the Surface Sediments of Haedong Reservoir

  • Byung-Chul Moon;Kwa
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.1.2-9
    • /
    • 1992
  • We investigated the depth profiles of heavy metals in the surface sediments at Haedong reservoir in Pusan. Sampling was done at the intervals of 50 m of drift along the water channel into the reservoir. All samples were analyzed with an ICP-AES. We determined the content of Zn, Pb, Cd, Mn, Cu, Cr, and Fe. The overall mean content of these heavy metals were observed to $(2.9{\pm}1.2){\times}10^{-3}$, $(1.3{\pm}0.7){\times}10^{-3}$, $(1.9{\pm}2.1){\times}10^{-4}$ $(2.3{\pm}1.1){\times}10^{-2}$ $(1.6{\pm}1.0){\times}10{-3}$, and $(4.5{\pm}2.6){\times}10^{-4}$ ppm/ppm Fe, recpectively excluding iron data. Mean contents of Cu show an increasing trend toward the surface of sediments, while those of U show a decreasing trend, and those of Pb and Cr are relatively stable. Comparing with the contents of heavy metals in soils at two sites of Kumjeong mountain, enrichment factors of heavy metals in the surface sediments were determined. Among heavy metals we investigated, copper showed the largest value of enrichment factor. Considering the maximum content of heavy metals in the surface sediment, the values of enrichment factors of Cu, Cd and Cr were significant which were n, 8.1 and 4.0, respectively. In leaching experiment, it appeared that Pb, Cd, Cr, and Fe in sediments were hardly leached out into water. We also examined the effect of pH on the content of heavy metals.

  • PDF

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.