• Title/Summary/Keyword: heavy metal removal

Search Result 485, Processing Time 0.025 seconds

Effect of Slag Dumping on Heavy Metals in the Neighbour Sea and Direction of Recycling on Slag (제철 슬래그(Slag) 매립으로 인한 인근 해역의 중금속 오염도 변화 및 재활용 방향에 대한 연구)

  • Chung, Yong;Kim, Yong-Bum;Kwan, Yong-Sik;Lee, Sun-Hi
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.2
    • /
    • pp.21-31
    • /
    • 1996
  • To assess the impact resulted from the slag dumping, we studied that the changes in the concentration of heavy metal were researched through the statistic analysis at 4 stations in Yongil bay, Korea from 1988 to 1995. And in order to clarify resulting from the changes in heavy metal concentration due to be leaked out from dumped slag, it was fulfilled experiments of the slag extraction. In the extracting experiment, Pb and As were only leaked out from slag aged during 10 days but all of heavy metals were not from it aged during 90 or 180 days. It was found that the concentrations of heavy metals in sea water of vincinity of slag dumping area were still remained in similar, comparing with it of control site(site 4) when they were by analysed statistic method, anova test and Mann-Whitney test. The slag recycling ratio of our country is lower than foreign country. While we need to apply a new process for phosphate treatment, foreign country already apply a slag to phosphorous removal. We suggest that slag dumping cannot putatively affected the changes in the concentration of heavy metal. And we thought that impact of heavy metal induced by slag dumping was not severe. So, it is necessary to utilize this process in phosphorous removal, like a foreign country.

  • PDF

EDTA-Enhanced Electrokinetic Removal of Cu and Zn from Contaminated Sandy Soil (동전기 기술과 세척제 EDTA를 이용한 모래 토양으로부터 구리 및 아연의 제거)

  • Lee, Hyo-Sang;Hong, Soon-Myong;Ko, Sung-Hwan;Lee, Ki-Say
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • EDTA-enhanced electrokinetic removal of copper and zinc from contaminated sandy soil was carried out. In desorption equilibrium tests, the required mass ratio of EDTA to metal was 10:1 to obtain over 90% of desorption from soil. The removal of heavy metals with chelating agent EDTA below pH 3 was limited because of EDTA precipitation. In electrokinetic experiments, the pH control at anode chamber was essential and 38% Cu and 56% Zn were removed under 30 mA for 1.5 days. Heavy metal removal was greatly improved by controlling anode and soil pH with circulation of anolyte with NaOH solution, in which >50% heavy metal was removed for 4 days and >70% for 9 days.

  • PDF

A Study on Removal of Pb, Cr, Cd in Wastewater Using Exhausted Coffee (커피찌꺼기를 이용한 폐수 중의 Pb, Cr, Cd의 제거에 관한 연구)

  • 임성훈;정문식;박석환
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 1995
  • The removal of heavy metals from synthetic wastewater containing Pb, Cr, Cd using previously washed and dried exhausted coffee was studied varying cohcentration, pH and temperature. All the heavy metals were removed in 3.0 minutes and the removal efficiency was maximum 80~90% with different pH and temperature conditions. The differences in removal efficiency between exhausted coffee and activated carbon under the same conditions were not seen. The removal efficiency was slightly increased with increasing pH in Cd and increasing temperature in Cr, respectively. The batch adsorption kinetics and adsorption equilibrium were examined and described by a first order reversible reaction and Freundlich isotherm, respectively. And the removal of Pb was found to have the best removal efficiency.

  • PDF

Preparation of Water Soluble Chitosan Blendmers and Their Application to Removal of Heavy Metal ions from Wastewater

  • Seo, Sang-Bong;Toshio Kajiuchi;Kim, Dae-In;Lee, Soon-Hong;Kim, Hak-Kil
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • High purity water soluble chitosans (WsCs) were employed as a flocculant to remove heavy metal ions from wastewater of industrial plating wastewater treatment complex. Their weight average molecular weights and polydispersities were 272,000~620,000 g/mol and 1.4~1.9 range, respectively and were readily soluble in water in the pH range of 3~11. Heavy metal ions such as chromium, iron and copper were removed well by WsCs. When WsCs was blended with either sodium N, N-diethyldithiocarbamate trihydrate (SDDC$_{T}$) or sodium salicylate (SSc), the removal efficiency was further increased primarily due to the excess amount of hydrophilic sulfonic and carboxylic groups. Especially, in the case of WsCs-SSc the remaining chromium and copper concentrations were 0.1 mg/L and 9.5 mg/L, which are 1/15 and 1/3 compared with that of pure WsCs, respectively. The former is within the acceptable limit, but the latter is not. Therefore, the effective copper flocculant remains to be studied.d.

Removal of Heavy Metal in Wastewater with Coffee Grounds (커피 찌꺼기를 이용한 폐수중의 중금속 제거)

  • Shin, Hyun-Gon;Kim, Choong-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.44-49
    • /
    • 2014
  • In order to remove the heavy metals from synthetic wastewater containing Pb, Cr, and Cd, the experiment was conducted with a variety of concentration and pH by using the washed and dried coffee grounds as adsorbent. Almost of the heavy metals were removed in thirty minutes and the removal efficiency was maximized to the 80 percents following the different pH conditions. Furthermore, in the case of Cr, the removal efficiency was declined with the increasing of pH. As a result of this study, coffee grounds is proved to be a very good adsorbent to remove the heavy metals.

Removal Efficiency of Heavy Metals and Nutrients by Zeolite and Basic Oxygen Furnace Slag (제올라이트와 제강슬래그에 의한 중금속과 영양염류 복합오염물질의 제거 효과)

  • Kim, Yongwoo;Oh, Myounghak;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.13-19
    • /
    • 2014
  • Permeable reactive barrier has been recognized as the one of representative methods for remediation of contaminated groundwater. Reactive barrier system containing two and more reactive materials can remove multiple contaminants such as nutritive salts and heavy metals. In this study, removal efficiency of multiple contaminants was evaluated when both zeolite and basic oxygen furnace slag were used as reactive materials. Sequential batch test which consists of two materials was performed to evaluate removal efficiency comparing the reaction order of them against nutritive slats including ammonium and phosphate and heavy metal including cadmium. As a result, zeolite-basic oxygen furnace slag sequence batch test showed the best efficiency for removal of multiple contaminants including nutritive salts and heavy metal.

Remediation of heavy metal-contaminated soils using eco-friendly nano-scale chelators

  • Lim, Heejun;Park, Sungyoon;Yang, Jun Won;Cho, Wooyoun;Lim, Yejee;Park, Young Goo;Kwon, Dohyeong;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.137-146
    • /
    • 2018
  • Soil washing is one of the most frequently used remediation technologies for heavy metal-contaminated soils. Inorganic and organic acids and chelating agents that can enhance the removal of heavy metals from contaminated soils have been employed as soil washing agents. However, the toxicity, low removal efficiency and high cost of these chemicals limit their use. Given that humic substance (HS) can effectively chelate heavy metals, the development of an eco-friendly, performance-efficient and cost-effective soil washing agent using a nano-scale chelator composed of HS was examined in this study. Copper (Cu) and lead (Pb) were selected as target heavy metals. In soil washing experiments, HS concentration, pH, soil:washing solution ratio and extraction time were evaluated with regard to washing efficiency and the chelation effect. The highest removal rates by soil washing (69% for Cu and 56% for Pb) were achieved at an HS concentration of 1,000 mg/L and soil:washing solution ratio of 1:25. Washing with HS was found to be effective when the pH value was higher than 8, which can be attributed to the increased chelation effect between HS and heavy metals at the high pH range. In contrast, the washing efficiency decreased markedly in the low pH range due to HS precipitation. The chelation capacities for Cu and Pb in the aqueous phase were determined to be 0.547mmol-Cu/g-HS and 0.192mmol-Pb/g-HS, respectively.

Preparation of ion exchanger from waste paper cup and removal characteristics of heavy metal (폐종이컵을 이용한 이온교환체 제조와 중금속제거특성)

  • 유수용;이훈용;정원진;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.993-999
    • /
    • 2002
  • Waste paper cup was sulfonated to be used as ion exchanger. Removal characteristic of copper and lead ion by prepared ion exchanger was investigated. The sulfonation was conformed by the high intensity band of $SO_3H$ group around 1100~$1160cm^{-1}$. The synthesized ion exchanger had greater removal ability for copper and lead ion than the original waste paper cup. Ion exchange system reached the final equilibrium plateau within 30min. The maximum removal capacities $q_{max}$ were calculated as 9.79mg/g fur copper and 15.95mg/g for lead, respectively. The affinity of lead based on a weight was higher than that of copper. The ion exchange phenomena appeared to follow a typical Freundlich isotherm.

Effect of bark on the adsorption of heavy metal ions (2) - Effect of Pinus densiflora and Quercus mongolica barks on the adsorption of Cu and Cd ions - (수피(樹皮)에 의(衣)한 중금속(重金屬) 흡착효과(吸着效果)(2) - 소나무와 신갈나무 수피(樹皮)에 의한 Cu와 Cd의 흡착효과(吸着效果) -)

  • Paik, Ki-Hyon;Kim, Kyung-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 1986
  • This investigation involves a study of the physical and chemical factors of Pinus densiflora SIEB. et ZUCC. and Quercus mongolica Fisher barks affecting on the adsorption of heavy mteal ions. The results obtained can be summarized as follows. 1. The capacity of the untreated bark to remove the Cu and Cd from solution was similar to or 5% higher than that of formaldehyde treated bark in both species. Considering that untreated bark lead to color-leaching problem, bark treated with formaldehyde are economical. 2. With decreasing particle size of bark(20-80), the adsorption ratio of the Cu and Cd from solution was increased. Quercus bark adsorbed more Cu and Cd at smaller particle size compared to Pinus bark. 3. The heavy metal eqilibrium adsorption of the bark from Cu and Cd solution was attained within 10 min. Pinus bark removed about 48% of the Cu and 41% of the Cd from solution in 10 min while Quercus bark removed about 50% during that period. 4. As the initial metal concentration increased. the absolute metal uptake was increased while percentage removal was decreased. At the lower metal concentration (10 ppm). Pinus and Quercus barks removed 77-94% of the Cu and 72-84% of the Cd. At high metal concentration (200 ppm), the adsorption ratio was 40% Cu and 25% Cd, respectivelty. 5. The maximum adsorption of the Cu and Cd from solution was obtained at pH 5-6 in filtrate. 6. With increased bark weight per given metal concentration, absolute removal of metal ion from solution was increased, but the percentage removal was decreased. The amount of adsorption was 4.2 mg Cu and 4.2 mg Cd per gr. Pinus, bark and 5.4 mg Cu and 4.3 mg Cd per gr. Quercus bark, respectively.

  • PDF

Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water (Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발)

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • In this study, we have developed a microbe-carrier that combined Desulfovibrio desulfuricans and zeolite for removal of Zn and As in contaminated seawater. Desulfovibrio desulfuricans, one of the sulfate-reducing bacteria (SRB) microorganism was exhibited stable growth characteristics in highly salted water and strong resistance to Zn and As contaminated seawater. Moreover, zeolites are one of the most useful carrier to remove heavy metals from wastewaters. The results showed that SRB immobilized zeolite carrier can enhance removal ratio of Zn and As. In addition, heavy metals tended to be better removed in medium at conditions of $37^{\circ}C$. In case of heavy metal concentration, they were effectively removed ranging from 50 to 100 ppm. These results show that SRB-zeolite carriers hold great potential to remove cationic heavy metal species from industrial wastewater in marine environment.