• Title/Summary/Keyword: heavy metal Pb

Search Result 1,392, Processing Time 0.035 seconds

The Contents of Heavy Metals (Cd, Cr, As, Pb, Ni, and Sn) in the Selected Commercial Yam Powder Products in South Korea

  • Shin, Mee-Young;Cho, Young-Eun;Park, Chana;Sohn, Ho-Yong;Lim, Jae-Hwan;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Yam (Dioscorea) has long been used as foods and folk medicine with the approved positive effects for health promotion. Although consumption of yam products is increasing for health promotion, reports for the metal contamination in commercial yam powder products to protect the consumers are lacking. In this study, we aimed to assess whether the commercial yam powder products were heavy metal contaminated or not using the yam products from six commercial products from various places in South Korea. The contents of heavy metals (Cd, Cr, As, Pb, Ni, and Sn) in yam powder products were measured and compared to national and international food standard levels. Also, the metal contamination was monitored during the food manufacturing steps. The study results showed that the contents of heavy metals (Cd, Cr, As, and Pb) in yam powder products are similar to those in national 'roots and tubers' as well as in various crops. In comparison to three international standard levels (EU, Codex and Korea), Cd content in yam powder products was lower but Pb content was 5 times higher. Also, Pb, Ni, and Sn may have the potential to be contaminated during food manufacturing steps. In conclusion, the level of heavy metals (Cd, Cr, As, Ni, and Sn) except Pb is considered relatively safe on comparison to national and international food standard levels.

Heavy Metal Concentrations in Tree Ring Layer and Soil and Tree Ring Growth of Roadside Trees in Seoul (서울시 가로수의 연륜층 및 식재주변 토양의 증금속 농도와 연륜 생장)

  • Yoo, Jae-Yun;Son, Yo-Whan
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2003
  • This study was carried out to examine the heavy metal concentrations in soils under roadside trees and tree ring layers, and to investigate the relationship between heavy metal concentrations and tree ring growth of roadside trees in Seoul. Soil samples at $0{\sim}20\;cm$ depth and tree line were collected from Platanus occidentalis and Ginkgo biloba at nine streets, and pH and heavy Metal concentrations were analyzed. Soil pH ranged from 6.62 to 8.01 and soil heavy metal concentrations under roadside trees were higher (Zn 109.03, Pb 26.49 and Cu 44.98 mg/kg) compared with those of the referred forest soils. Soils at Cheonggye2ga street showed the highest heavy metal concentrations, and seemed to be related to heavy traffic and dense hardware stores. Tree ring width significantly decreased from 1979 through 2000 for both species. There were positive correlations between Cr, Pb and Cu concentrations in soils and tree ring layers for P. occidentalis and Ni for G. biloba. However, there were negative correlations between Cr concentration in tree ring layers and tree ring width for P. occidentalis, and Ni and Cu for G. biloba. Also there were no significant correlations between climatic factors in Seoul and tree ring width.

Evaluating Soil Respiration as Indicator of Heavy Metal Pollution in Agricultural Field

  • Choi, Won-Suk;Hong, Young-Kyu;Min, Kyung-Jun;Kim, Kwang-Jin;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.472-481
    • /
    • 2017
  • Agricultural field near at the abandoned metal mine and industrial area has a high possibility to be polluted by heavy metals. However, concern about chemical properties including heavy metal concentration has been increased and biological properties such as soil respiration has been minimal in heavy metal polluted field. Therefore, main objective of this research was to evaluate soil respiration as an indicator of heavy metal pollution in agricultural field. Total of 60 sampling sites including each 30 sites of abandoned metal mine and industrial area were selected and heavy metal concentration, soil respiration, and chemical properties were measured. Results showed that heavy metal concentration in metal mine area was ranged Cu: $6.21~85.23mg\;kg^{-1}$, Pb: $23.84{\sim}1,044.72mg\;kg^{-1}$, As: $1.88{\sim}691.44mg\;kg^{-1}$, Zn: $18.72{\sim}527.55mg\;kg^{-1}$, Cd: $0.58{\sim}4.27mg\;kg^{-1}$, and Cu: $0.29{\sim}30.62mg\;kg^{-1}$, Pb: $4.41{\sim}19.77mg\;kg^{-1}$, As: $2.23{\sim}11.76mg\;kg^{-1}$, Zn $39.98{\sim}109.59mg\;kg^{-1}$, Cd $0.29{\sim}0.57mg\;kg^{-1}$ for industrial area respectively. While no sampling site was exceed the threshold value of each heavy metals in industrial field, metal mine area was highly polluted with Pb, As, Zn, and Cd. Soil respiration in the metal mine and industrial area was ranged $12.05{\sim}299.80mg\;O_2\;kg^{-1}$ and $27.68{\sim}330.94mg\;O_2\;kg^{-1}$, respectively. Correlation analysis between heavy metal concentration in soil and soil respiration showed that negative correlation was observed in metal mine area while no correlation was observed in industrial area. This result might indicate that as heavy metal concentration was increased, microbial activity in soil was decreased resulting decrease of soil respiration rate. Overall, soil respiration can be used as indicator of heavy metal pollution in soil and more biological properties need to be evaluated to better understand heavy metal pollution in soil.

Comparions of Removal Performances of Divalent Heavy Metals by Natural and Pretreated Zeolites (천연 및 전처리 제올라이트에 의한 2가 중금속 이온 제거능의 비교.검토)

  • 감상규;김덕수;이민규
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.399-409
    • /
    • 1999
  • The three domestic natural zeolites(Yong dong-ri (Y), Daesin-ri (D), Seogdong-ri (S)) harvested in Kyeongju-shi and Pohang-shi, Kyungsangbug-Do, were pretreatd with each of the NaOH, $Ca(OH)_2$ and NaOH following HCl solutions, and the removal performances of divalent haevy metals(Cu, Mn, Pb, and Sr) for natural and pretreated zeolites were investigated and compared in the single and mixed solutions. The natural zeolite-heavy metal system attained the final equilibrium plateau within 20 min, irrespective of initial heavy metal concentration. The heavy metal uptakes increased with increasing initial heavy metal concentration and pH. The heavy metal uptakes for natural zeolites decreased in the following sequences : D>Y>S among the natural zeolites; Pb>Cu>Sr>Mn among the heavy metals. The pretreated zeolites showed higher heavy metal removal performances than natural zeolites and decreased in the order of NaOH, NaOH following HCl, $Ca(OH)_2$ treatment among the pretreatment methods. The heavy metal ion exchange capacity by natural and pretreated zeolites was described either by Freundlich equation or Langmuir equation, but it followed the former better than the latter. The heavy metal uptakes for natural zeolites decreased in the mixed solution, in comparing with those in the single solution and especially, the manganese uptake decreased greatly in the mixed solution. The pretreated zeolites showed the improved removal performances of heavy metals in the mixed solution than in the single solution and the heavy metal uptakes by those in the mixed solution showed the same trends in the single solution among the chemical treatment methods and heavy metals.

  • PDF

Studies on the Adsorption Capacity of Ni, Gu, and Pb by Genus Allium in Aqueous Solution (Allium속의 Ni, Cu 및 Pb 흡착력)

  • 김성조;백승화
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.299-306
    • /
    • 1996
  • The study was performed under the various conditions, such as the edible parts and particle sizes of Allium. The concentrations, the temperartures, and the pH of heavy metal solutions to investigated their adsorption capacity of heavy metals by genus Allium. The adsorption amount of Pb by Allium in the aqueous soluton was apparently higher than that of Ni and Cu by them. The larger the particle sloe of welsh onion and shallot was, the higher the adsorption of Cu was. The adsorptlons of Cu, Ni and sorption ratio was not different. As the temperature increased, the amount of heavy metal adsorption increased in general, but the adsorption of Ni by welsh onion and wild garlic and leek, Cu by shallot, wild garlic and leek decreased. Adsorption of Pb to Allium was not affected by the different values of pH, and adsorptions of Ni and Cu were greatly affected by those of pH. Especially, the higher the pH was, the greater the Ni adsorption to Allium was, and the lower the pH was, the higher the Cu adsorption was. The correlation between the amount of components in edible parts of Allium and that of adsorption of heavy metals was significantly high In amino acids containing sulfhydryl group(-SH) and vitamin B2.

  • PDF

Determination of heavy metal contents in meats (유통식육에서 중금속 함량조사)

  • Choi, Yoon-Hwa;Kim, Yeon-Ju;Lee, Kyung-Hye;Kang, Young-Il;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.3
    • /
    • pp.299-302
    • /
    • 2010
  • This study was conducted to determine the content of heavy metals in meats available on the Korean markets. Trace metals (Pb, As and Cd) were detected in 4 kinds, 172 samples by inductively coupled plasma-mass spectrometry (ICP-MS). The values of heavy metals in meats were as follows; In beef, mean (minimum~maximum) values of the heavy metals were Pb: 0.075 (0.020~0.190)mg/kg, As: 0.010 (0.001~0.050)mg/kg and Cd: 0.43(0.07~2.11)${\mu}g/kg$. In pork, mean (minimum~maximum) values of the heavy metals were Pb: 0.065 (0.012~0.171)mg/kg, As: 0.004 (ND~0.021)mg/kg and Cd: 0.43(0.08~1.09)${\mu}g/kg$. In chiken, mean (minimum~maximum) values of the heavy metals were Pb: 0.060(0.016~0.211)mg/kg, As: 0.008 (ND~0.042)mg/kg and Cd: 0.42 (0.02~3.80)${\mu}g/kg$. In duck, mean (minimum~maximum) values of the heavy metals were Pb: 0.070 (0.011~0.157)mg/kg, As: 0.005 (0.001~0.011)mg/kg and Cd: 0.87 (0.15~3.75)${\mu}g/kg$. This results will be used as a basic data for the future legislation on the regulation and control of heavy metal in meats.

Characteristics of Heavy Metal Ion Adsorbent Extracted from Crab Shell (Crab Shell로부터 추출한 중금속 흡착제들의 특성)

  • 현근우;이찬기;이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.46-55
    • /
    • 1999
  • This study compared the adsorption characteristics of heavy metal ions by crab shell, treated crab shell with 2N-HCl, treated crab shell with 4%-NaOH, chitin and chitosan.Using crushed crab shell, the heavy metal ions removal rates of $Cd^{2+}$ and $Zn^{2+}$ were about 70-80% in 45minutes, but the removal rates of $Cu^{2+}$, $Cr^{6+}$ and $Pb^{2+}$ was less than 10%, 10% and 30%, respectively. For the by-products crab shell by 2N-HCl treatment, it was shown that the removal rates of $Cu^{2+}$ and $Pb^{2+}$ were about 70-80% in 45minutes reaction. But, some problems were observed, that the contained protein in crab shell was changed into gel in the mixing solution after a few hours. For the by-products of crab shell by 4%-NaOH treatment, the removal rates of Pb and Zn were about 90% in 45 minutes, and those of capacity of chitin and chitosan powder was better than those of the other by-products. The more adding to the adsorbent dosages increased the removal rates, and the adsorption reaction was rapidly occurred in a few minute. Using 1.0 wt% chitin powder, the heavy metal removal rates were ordered $Cu^{2+}$(94%) > $Zn^{2+}$(89%) > $Cd^{2+}$(88%) > $Pb^{2+}$(77%) > $Cr^{6+}$(58%) in 45 minutes. Using 1.0 wt% chitosan powder, the heavy metal removal rates were ordered $Cu^{2+}$(99%) > $Pb^{2+}$(96%) > $Cd^{2+}$(79%) > $Zn^{2+}$(71%) > $Cr${6+}$(46%) in 45minutes. The degree of degree of deacetylation by prepared chitosan was 91%.The Freundlich adsorption isotherm of $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$, when it was applied to 1.0 wt% chitosan powder in minutes, can be acceptable very strictly. The equation constant (1/n) for $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$ were 0.54 0.41 and 0.23 respectively.

  • PDF

Heavy Metal Contamination in Soil, Rice, and Sediment from ManKyeong and DongJin River Area (만경강·동진강 유역의 토양, 현미, 저질토중의 중금속 함량 및 분포)

  • Kwon, Young-Hun;Sung, Kum-Soo;Hwang, Gab-Soo;Chang, Che-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.2
    • /
    • pp.143-153
    • /
    • 2000
  • This study was performed to investigate the heavy metal contents and distribution in soil, sediment, and rice from the downstream area of ManKyeong and DongJin River. Of the sites on Mankyeong river area, site M-1(Mokchon bridge) showed the highest average contents of Cd, Cr and Pb in paddy soil. In DongJin river area, site D-3(Munpo) and D-4(Gerjeonri) showed relatively high level of average contents of Cr, Pb and Zn in paddy soil. The average contents of heavy metals in brown rice from ManKyeong river area were 0.10mg/kg for Cd, 0.99mg/kg for Cr, 2.07mg/kg for Pb, 4.44mg/kg for Cu and 32.03mg/kg for Zn while those in brown rice from DongJin river area were 0.14mg/kg for Cd, 0.74mg/kg for Cr, 1.78mg/kg for Pb, 4.57mg/kg for Cu and 33.60mg/kg for Zn. Zn showed the highest transportation-rate from paddy soil to brown rice while Pb showed the lowest. From the results of heavy metal analysis in sediments, the average contents of Cd, Cr, Pb and Cu were generally high in site M-5(Euonri) and D-4(Gerjeonri), the most downstream sites in Mankyeong river and DongJin river, respectively.

  • PDF

Impact of Reclaimed Wastewater Irrigation on Heavy Metal Contamination in Soil and Vegetables (하수처리수의 농업용수 재이용이 토양 및 작물의 중금속 함량에 미치는 영향 분석)

  • Kim, Hak-Kwan;Jang, Tae-Il;Lee, Eun-Jung;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.827-831
    • /
    • 2008
  • In this study, the effects of reclaimed wastewater irrigation on the concentration of heavy metals such as lead, zinc, cadmium, and copper in soil and vegetables were investigated by monitoring an experimental area irrigated with reclaimed wastewater. Three treatments and three replications on $10{\times}2$-m plots were installed and heavy metal concentrations in soil and vegetables were monitored from 2005 to 2007. The treatments applied in this study were groundwater irrigation (control treatment), wastewater irrigation, and irrigation with filtered reclaimed wastewater treated with ultraviolet light. The monitored results showed that the concentrations of Cu, Cd, and Pb in soil during the experimental period were lower than initial soil levels before irrigation, whereas Zn increased in all treatment plots. However, the ranges of Zn, Cu, Cd and Pb in soil were below the soil pollution standards in the Republic of Korea. Heavy metal concentrations in vegetables showed insignificant variations for all treatments.

  • PDF

Heavy Metal Contents of Forest Soil and Lonicera japonica near Onsan Industrial Region (온산공단 주변 산림토양과 인동덩굴의 중금속 함량)

  • Park, Eun-Hee;Cho, Min-Ki;Yang, Jae-Kyung;Kim, Jong-Kab;Moon, Hyun-Shik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.222-228
    • /
    • 2006
  • This study was conducted to evaluate the heavy metal content (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) of forest soil and of Lonicera japonica and to understand the correlation in contents of heavy metal between forest soil and L. japonica near the Onsan industrial region. The content of As, Cd, Cu, Pb and Zn was higher in the industrial region than in forest regions, but re, Mn and Ni content was higher in forest regions than in the industrial region. Among heavy metals, the content of Cd, Cu, Pb and Zn in leaf, stem and root of L. japonica growing near industrial regions was significantly higher (p<0.05) than in forest regions. The content of As, Cd, Cu, Pb and Zn in L. japonica tissues showed a positive or negative correlation with those in forest soils. Correlation coefficients of Cu content between forest soil and organs of L. japonica ranged from 0.93 to 0.99 (p<0.01). It was concluded that L. japanica could be used in heavy metal (Cd, Cu, Pb, and Zn) decontamination of forest soils of industrial regions.